

Cookbook
End-to-end Encryption

Unknown recipient
Version 1.3

This document is provided to you free of charge by

The eHealth platform

Willebroekkaai 38 Quai de
Willebroeck

1000 BRUSSELS

All are free to circulate this document with reference to the URL source.

Table of contents

Table of contents .. 2
1 Document management ... 3

1.1 Document history .. Error! Bookmark not defined.
1.2 Document references .. 3
1.3 Versioning ... 3
1.4 Goal of the document .. 3

2 Global overview of the ETEE service ... 4
2.1 Overview of all required components ... 4
2.2 High level schema of the Unknown Recipients functionality 4
2.3 Detailing the steps ... 5

3 Quick starting guide... 9
3.1 Prerequisites .. 9
3.2 eHealth Authentication Certificate ... 9
3.3 ETK ... 9
3.4 The Crypto Library ... 10
3.5 Step-by-step instructions... 11

4 General information... 12
5 The Key Generation Storage Service (KGSS) .. 14

5.1 GetNewKey... 15
5.2 GetKey .. 18

6 The Crypto Library .. 22
6.1 SealForUnknown .. 22
6.2 UnsealByUnknown ... 24
6.3 Error and failure messages .. 27

7 Implementation aspects ... 28
7.1 Development and test procedures ... 28
7.2 Request for release in production ... 28
7.3 Maintenance, support and monitoring of the service .. 28

8 Errors and solutions ... 29
8.1 EteeResponseType .. 29
8.2 Invalid Key Size.. 29

9 Risks .. 30
10 Contact ... 31
11 Licenses ... 32

11.1 Apache ... 32
11.2 Bouncy Castle .. 32

12 Annex... 33

Service specification eHealth‐ETEE Unknown recipients v.1.2 2/33

1 Document management

1.1 Document references

These documents can be found in the technical library of the eHealth portal.

ID

Title

Version

Date

Author

1

Requesting eHealth Certificates

v.2.0

May 2010

eHealth

2

Cookbook “Cookbook v.2.0:

End‐to‐end Encryption for a

known recipient (addressed

messages)”

v.2.1

April 2010

eHealth

3

Cookbook STS

eHealth

4

Glossary

1.0

eHealth

1.2 Versioning

The versions of the related components and documentation of this document are:

Reference

Version

Date

Crypto Library

v.1.6.1

2010‐08‐20

Requesting eHealth Certificates

v.2.1

2010‐04

1.3 Goal of the document

This document is intended as an integration reference for the eHealth ETEE
1

basic service ETEE‐Unknown

Recipients. The target audience is software integrators implementing the ETEE services in their own custom

application. This document is not a software manual for end users containing instructions and screenshots of

an application. Instead, it explains the concepts, principles and interface of the KGSS web service and the

Crypto Library.

The unknown recipient functionality requires the use of all the known recipient components. You need the

cookbooks “ETEE known recipients” and “ETEE unknown recipients” in order to integrate the “ETEE Unknown

recipients” functionality.

This document will provide you with all the necessary elements to get you started developing. In this context it

explains:

- the main concepts and principles;

- the use of KGSS web services;

- the use of the unknown recipients functionality offered by the Java Crypto Library.

1
End‐to‐end Encryption

Service specification eHealth‐ETEE Unknown recipients v.1.2 3/33

2 Global overview of the ETEE service

Please refer to the ETEE Known Recipients cookbook for a brief introduction and some references to

important concepts and technologies. Please note that there is only one Crypto Library that is used for Known

and Unknown Recipients.

The End‐To‐End Encryption basic services only offer building blocks that allow to integrate secure

communications in applications.

It does not offer a prepackaged ‘End‐To‐End’ business solution. This means you have to create your own client

application with an implementation of:

- an ETK Client;

- a KGSS Client;

- a software that integrates the Crypto Library;

- a way to pass on a message reference to a message receiver;

- a way to pass on a key reference to a message receiver (optional if a key reference is used in the MSS);

- a Message Storage Center (you could store the message reference in the MSS).

2.1 Overview of all required components

The ETEE unknown recipients service builds on the functionality of the known recipient’s service:

- the ETK;

- the ETK Depot;

- the Crypto Library functionality for known recipients (Seal/Unseal/VerifyEtk).

Furthermore, it consists of two additional parts:

- The Key Generation Storage Service (KGSS) that creates, stores and delivers symmetrical keys. The

KGSS is a service provided by eHealth that does not store messages.

- The Crypto Library functionality for unknown recipients (SealForUnknown/UnsealByUnknown) that

uses symmetrical encryption.

eHealth does not provide a Message Storage Center, only a Key Generation and Storage Service. eHealth does

never store medical information, not even if this information is encrypted.

2.2 High level schema of the Unknown Recipients functionality

These additional web services for Unknown Recipients and Crypto Library methods need a working solution.

The example below describes how to use them in a business scenario. Note that this is an example and that

these steps largely depend on the implementation requirements of the eHealth client.

The following high level schema represents the steps the sender and the receiver need to carry out in order to

communicate in a secure way.

The lines in bold indicate that Unknown Recipients building blocks are used. These steps will be described in

detail in the next section. The remaining steps are examples on how the solution could be implemented, but

they are out of scope. eHealth only offers services for encrypting and decrypting information (the library) and

key storage (the ETK and KGSS).

Service specification eHealth‐ETEE Unknown recipients v.1.2 4/33

KGSS

Lines in bold indicate

Unknown Recipients functionality

GetNewKey

GetKey

1

GetNewKey

6

GetKey

4

Transfer Message Reference

and or Key Reference (out of scope)

Sender

2 SealForUnknown

Receiver

7 UnsealByUnkown

SealForUnknown

3

Store Message

and Key Reference

(out of scope)

5

Retrieve Message

(out of scope)

UnsealByUnknown

Crypto Library

Message Storage Service

(Out of Scope)

Crypto Library

Figure 1: High level schema

2.3 Detailing the steps

Step 1. The sender requests a new key and calls the KGSS. The KGSS returns a key and its corresponding key

identifier. The secured part of the message request must be sealed with the ETK of the KGSS. The secured part

of the response is sealed by the KGSS and must be unsealed by the sender.

The functionality for interaction with the KGSS is covered by the KGSS web service. Please consult

section “5.1

Service specification eHealth‐ETEE Unknown recipients v.1.2 5/33

GetNewKey” on page 15.

This request/response communication cycle with the KGSS requires the use of the “known

recipients” functionalities to encrypt/decrypt the communication between the sender and the KGSS.

Figure 2: Detail GetNewKey

Step 2. The sender can use the Crypto Library (implemented in his own secured system) to SealForUnknown

the message by using the new key.

This functionality is covered by the Crypto Library. Please consult section “6.1 SealForUnknown”

on page 22”.

Step 3. The message must be stored in a Message Storage Service. This service is defined as the MSS. It is not a

building block of the ETEE unknown recipient basic service (out of scope). Therefore eHealth does NOT provide

Service specification eHealth‐ETEE Unknown recipients v.1.2 6/33

any kind of message storage system, nor does it provide an interface or authorization and authentication

mechanisms. This system must be entirely implemented by the eHealth customer as a part of his

project. eHealth does not store these confidential messages.

Step 4. The key and/or message reference of the message is passed onto the recipient of the message. This

part does not lie within the scope of the ETEE unknown recipient basic service. The key identifier and/or

message reference can be passed on by any possible means (SMS, paper, email, web service, file, ...).

Step 5. The receiver can retrieve the message with its message reference from the MSS.

Step 6. The receiver needs to obtain the key that corresponds to the key identifier from the KGSS, depending

on which element has been provided.

The functionality that deals with the interaction with the KGSS is covered by the KGSS web service.

Please consult section “5.2 GetKey” on page 18.

This request/response communication cycle with the KGSS requires the use of the “known recipients”

functionalities to encrypt/decrypt the communication between the receiver and the KGSS.

If the receiver has both the key reference and the message reference available to him, steps 5 and 6 can be

inverted.

Step 7. The retrieved message can be decrypted by using the ‘UnsealByUnknown’ method of the Crypto

Library. This requires the symmetrical key and the encrypted message as input arguments.

This functionality is covered by the Crypto Library. Please consult section “6.2 UnsealByUnknown” on

page 24.

Service specification eHealth‐ETEE Unknown recipients v.1.2 7/33

Figure 3: Detail GetKey

Service specification eHealth‐ETEE Unknown recipients v.1.2 8/33

3 Quick starting guide

3.1 Prerequisites

3.1.1 Java

The ETEE Crypto Library can be used with any operating system that supports Java version 1.5.0 or above.

Developers must use the JDK version. Clients that only use the ETEE service must have the JRE installed. Java

can be downloaded from Sun Microsystems.

http://java.sun.com

3.1.2 Java Cryptography Extension (JCE)

You must download and install the Java(TM) Cryptography Extension Unlimited Strength Jurisdiction Policy Files

5.0.

https://cds.sun.com

3.1.3 Bouncy Castle

The library has been tested with Bouncy Castle 1.39 or higher for Java version 1.5.0. The required Bouncy

Castle libraries are delivered with the ETEE package. The required JARs can also be downloaded from the

Legion of the Bouncy Castle.

www.bouncycastle.org

3.1.4 Get Log 4j

This component is required to show exactly what the Crypto Library is doing when it is used, so that this log

information can be shown or saved.

Apache log4j is a Java based logging utility. You must use version 1.2 or higher. The software can be

downloaded from the Apache Software Foundation.

www.junit.org

logging.apache.org

3.2 eHealth Authentication Certificate

To use the ETEE service, you must have an eHealth authentication certificate. Please contact eHealth if you

have any doubts about the compatibility of your current certificate.

3.3 ETK

In order to secure communications between a client and the Key Generation Storage Service (KGSS), an ETK is

required. Please see the instructions in the “Requesting eHealth Certificates” document.

Service specification eHealth‐ETEE Unknown recipients v.1.2 9/33

3.4 The Crypto Library

The Crypto Library can be found in the technical library of the eHealth portal. The following files are part of the

Crypto Library package. The minimum version of the Crypto Library that supports unknown recipients is v1.5.

D https://www.ehealth.fgov.be/nl/page/website/home/platform/technicallibrary.html

FR https://www.ehealth.fgov.be/fr/page/website/home/platform/technicallibrary.html

The java documentation, examples, tests, test resources and additional libraries that are required and useful to

test and integrate the Crypto Library are packaged as follows.

File: etee‐crypto‐[version].jar

3.4.1 Java Documentation

File: etee‐crypto‐[version]‐javadoc.jar

The Java code has been thoroughly documented. A compilation of all this documentation can be found in this

file.

3.4.2 Examples and tests

File: etee‐crypto‐[version]‐tests.jar

The examples within the packages show error and exception handling. These examples will be discussed in

detail below in this cookbook. The tests contain JUnit tests that can be used to check your configuration. All

JUnit tests should pass successfully in order to confirm you have a good working environment. All JUnit files can

be identified by their ‘TEST’ prefix.

3.4.3 Test sources

File: etee‐crypto‐[version]‐test‐sources.jar

The test sources contain all necessary files for Known and Unknown Recipients, including passwords to run the

tests. These files are possibly key stores, test messages or ETKs. Private Keystores contains Alice’s and Bob’s

private authentication key and private encryption key including their corresponding certificates. As

documented in the test resources, the password is always “test”.

3.4.4 Additional libraries

These additional libraries can be identified as Bouncy Castle libraries, which are required at runtime. These are

essential libraries that implement the basic cryptography functionalities. The additional libraries for Log4j

Bouncy Castle must be copied to the Java CLASS PATH.

Files: bcmail‐jdk15‐1.44.jar

bcprov‐jdk15‐1.44.jar

The other libraries are testing dependencies that are useful if you want to run the JUnit tests or debug.

Files: log4j‐1.2.13.jar

junit‐4.7.jar

Service specification eHealth‐ETEE Unknown recipients v.1.2 10/33

3.5 Step‐by‐step instructions

In order to use the building blocks that are specific to unknown recipients, the following actions are required:

1. Integrate and comply with the prerequisites (Java, JCE, bouncy castle).

2. Obtain an eHealth Authentication Certificate. The procedure ‘Requesting eHealth Certificates’ can be

found in the eHealth Technical Library.

3. Obtain an ETK (using the ETEE Requestor application). The procedure ‘Requesting eHealth Certificates’

can be found in the eHealth Technical Library. In order to use the ‘Unknown Recipients’ functionality,

you must also have an ETK for secure communications from and to the KGSS.

4. The Unknown Recipients functionality is based on the Known Recipients functionality. Therefore you

need the Known Recipients components and functionality. This means:

- ETK Depot (getEtk);

- Crypto Library (Seal/Unseal/VerifyEtk).

5. Integrate the unknown recipients functionality:

- KGSS;

- Crypto Library version 1.5 or above (SealForUnknown/UnsealByUnknown).

Service specification eHealth‐ETEE Unknown recipients v.1.2 11/33

4 General information

The following section explains some complex elements that are defined as a type. These types are used as re‐

usable definitions in the KGSS web services.

4.1.1 ErrorType

If an error occurs, the following information will be displayed.

Field name

Descriptions

Code

A custom code has to be defined. Three‐letter error code.

Message The error message. The ‘Lang’ attribute contains the language of the error message.

4.1.2 EteeResponseType

The EteeResponseType is a custom type that is used to provide generic information with every response. This

standard way of providing feedback information enhances readability.

Service specification eHealth‐ETEE Unknown recipients v.1.2 12/33

Field name

Descriptions

Status

The Status block will contain a code and a message language reference.

 Code A three‐letter error code that defines the status of the request.
Message Returns the message language of the message, if there is any.

Error (optional)

2

This custom type is also discussed in detail in the ‘Types’ section of this document. See

section “4 General ” on page 12.

4.1.3 CredentialType

A credentialType is used within the ETEE project to identify an AllowedReader or an ExcludedReader. These

credentials are structured as follows:

Field name

Descriptions

Namespace

The namespace of the Credential attribute, e.g.

‐ “urn:be:fgov:ehealth:certified‐namespace”

Name

The name of the Credential attribute, e.g.

‐ “urn:be:fgov:ehealth:doctor‐nihii”

Value

The value of the Credential attribute, e.g.

‐ “74042015445”

2
This field is optional because a response does not always contain an error. Setting this field as a

mandatory field would result in an invalid response for each request that is processed correctly.

Service specification eHealth‐ETEE Unknown recipients v.1.2 13/33

5 The Key Generation Storage Service (KGSS)

The KGSS is only accessible through web services. The URL can be obtained by contacting the eHealth platform.

You must have an eHealth authentication certificate in order to access the service. There are 2 basic

functionalities, which are both described in detail and explained in relation to their position in the high level

overview schema.

All KGSS communication is encrypted. This means that:

1. requests from the message sender or receiver to the KGSS are sealed by using the ETK of the KGSS;

2. responses from the KGSS to the message sender or receiver are sealed by using the sender’s or

receiver’s ETK.

All of these steps must be completed for each message:

- GetNewKey – see step 1 on Figure 1: High level schema (p. 5) ‐ the sender calls the KGSS with a request to

return him a new key and an identifier. This key is used by the sender to encrypt information by using the

SealForUnknown method of the Crypto Library.

E.g. the sender requests a new key. The KGSS creates and stores a new key. The sender receives a response

with “AFAA18926FDF65C367BF9A838DAB4EF3” as the key identifier and

“EE37154F94DBF8F8D42E218397B3EA24” as the key.

- GetKey – see step 6 on Figure 1: High level schema (p. 5) ‐ the receiver of the sender’s actual encrypted

message can call the KGSS, asking for a specific existing key once he has obtained the key reference
3
. This

can be done by using the key’s ‘key identifier’ as a reference. The KGSS returns the corresponding key. This

key can be used by the receiver of the message in order to decrypt the information by using the Crypto

Library’s UnsealByUnknown method.

- e.g. the sender requests the key for the previously created key identifier

“AFAA18926FDF65C367BF9A838DAB4EF3”. The KGSS returns the key

“EE37154F94DBF8F8D42E218397B3EA24” in the response.

- Some examples of Key Identifiers and Keys that are stored in the KGSS:

Each ‘Key Identifier’ is unique and corresponds to exactly one ‘Key’.

Key Identifier

Key

AFAA18926FDF65C367BF9A838DAB4EF3

EE37154F94DBF8F8D42E218397B3EA24

201E606A1EDA1B61414B6A746A1417D0

852C061A622857776F3CB3313318E2A2

883CDBA88E2B981A531556719838A769

6F838BF8D8F84C70B87B529E10AE4C2F

- please note that depending on the size of the secured information, the size of the ‘SealedContent’

elements shown in the different examples will be larger.

3

How and when reference information is passed, is out of scope. Theoretically a receiver can already have

received the message from the sender, but he cannot have received the key reference to physically obtain it.

Service specification eHealth‐ETEE Unknown recipients v.1.2 14/33

5.1 GetNewKey

Step 1 of the high level overview.

This method will create and store a new symmetrical encryption key. It is used by the sender. The key and its

identifier are returned to the requestor.

Detail from functional step 1 in the high level overview: get a new key from the KGSS by the sender.

5.1.1 Requesting the new key

For each Unknown Recipient message sent, a new key needs must to be requested.

5.1.1.1 Structure of the GetNewKeyRequest

The GetNewKeyRequest contains the following information:

Service specification eHealth‐ETEE Unknown recipients v.1.2 15/33

AllowedReader

A list of AllowedReaders. This list contains the readers that

are allowed to obtain the newly created key. The allowed

readers must be identified with the eHealth CredentialType.

This custom type is discussed in detail in the ‘Types’ section

of this document. See section “4 General information” on

page 12.

E.g. All of type doctor and one dentist with

NIHII=’1234567890’
ExcludedReader

(optional)

A list of ExcludedReaders. This list contains the readers that

are explicitly excluded from getting the newly created key.

The excluded readers must be identified with the eHealth

CredentialType. This custom type is discussed in detail in the

‘Types’ section of this document. See section “4 General

information” on page 12.

E.g. For all doctors except for an excluded family member

that is a doctor with NIHII=’5678910123’
ETK The ETK provided by the requestor that will be used by the

KGSS to encrypt the response. This is usually the ETK of the

message sender.
DeletionStrategy

(optional)
Reserved for later use to define in which circumstances a key

can be deleted. No further details are available at this time.

Field name

Descriptions

SealedNewKeyRequest/

SealedContent

‐‐‐‐‐‐‐ The Following information is Encrypted for the KGSS by the sender ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

.‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ END Encrypted information ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

5.1.1.2 Example

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2007 sp2 (http://www.altova.com)-->
<GetNewKeyRequest xsi:schemaLocation="urn:be:fgov:ehealth:etee:kgss:1_0:protocol
ehealth-etee-kgss-schema-protocol-3_1.xsd"
xmlns="urn:be:fgov:ehealth:etee:kgss:1_0:protocol"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SealedNewKeyRequest><SealedContent>UjBsR09EbGhjZ0dTQUxUjBsR09EbNQ
UFBUUNBRU1tQ1p0dU1GUXhEUzhi</SealedContent>

</SealedNewKeyRequest>
</GetNewKeyRequest>

Service specification eHealth‐ETEE Unknown recipients v.1.2 16/33

NewKeyIdentifier

Contains the identifier (=reference) for the new key to be

passed onto the recipient.
NewKey The requested new key requires an encryption of your

message.

5.1.2 Receiving the newly generated key

This is the response to the message sender by the KGSS.

5.1.2.1 Structure of the response

This is a response to a GetNewKeyRequest. The client of the web service will receive the new symmetrical key

and its identifier. The information is secured with the ETK that was sent in the request.

The GetNewKeyResponse contains the following information:

Field name

Descriptions

EteeResponseType

(extension)

This custom type is described in detail in the ‘Types’ section of this document. See

section “4 General information” on page 12.

SealedNewKeyResponse/

SealedContent

‐‐ The Following information is Encrypted with the ETK given in the Request ‐‐‐

.‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ END Encrypted information ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Service specification eHealth‐ETEE Unknown recipients v.1.2 17/33

5.1.2.2 Example

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2007 sp2 (http://www.altova.com)-->
<n1:GetNewKeyResponse Id="String"
xsi:schemaLocation="urn:be:fgov:ehealth:etee:kgss:1_0:protocol ehealth-etee-kgss-schema-
protocol-3_1.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:n1="urn:be:fgov:ehealth:etee:kgss:1_0:protocol">

<Status><Code>200</Code><Message> The KGSSRequest was correctly
processed.</Message></Status>

<n1:SealedNewKeyResponse>
<n1:SealedContent>RU1tQ1p0dU1GUXhEUzhiUjBsR09EbGhjZ0dTQUxNQUFBU

UNB</n1:SealedContent>
</n1:SealedNewKeyResponse>

</n1:GetNewKeyResponse>

5.2 GetKey

This method will retrieve an existing symmetrical encryption key. It is used by the receiver. The key identifier

must be provided in the request and the symmetrical key itself is returned in the response. For this request you

must have a valid SAML token.

The SAML token have been explained entirely in the cookbook of STS.

It is a part of step 6 that was previously described in the example scenario: the part in which the

communication with the KGSS is turned into a request/response cycle.

(Detail from functional step 6 in the high level overview: get an existing key from the KGSS by the receiver).

5.2.1 Retrieving an existing key

For each Unknown Recipient message, a key must be fetched from the KGSS.

Service specification eHealth‐ETEE Unknown recipients v.1.2 18/33

KeyIdentifier

The identifier of the key that must be retrieved.
ETK The ETK of the requestor that will be used by the KGSS for

encrypting the response. This is usually the ETK of the

message receiver.

5.2.1.1 Structure of the request

The GetKeyRequest contains the following information:

Field name

Descriptions

SealedKeyRequest/

SealedContent

‐‐‐‐‐‐‐ The Following information is Encrypted for the KGSS by the sender ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

.‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ END Encrypted information ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

5.2.1.2 Example

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2007 sp2 (http://www.altova.com)-->
<GetKeyRequest xsi:schemaLocation="urn:be:fgov:ehealth:etee:kgss:1_0:protocol ehealth-
etee-kgss-schema-protocol-3_1.xsd" xmlns="urn:be:fgov:ehealth:etee:kgss:1_0:protocol"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SealedKeyRequest><SealedContent>0dU1GUXhEUzhiUjBsR09EbGhjZ UjBsR
0dTQUxNQUFBUUNBRU1tQ1p </SealedContent>

</SealedKeyRequest>
</GetKeyRequest>

Service specification eHealth‐ETEE Unknown recipients v.1.2 19/33

5.2.2 The GetKeyResponse

5.2.2.1 Structure of the response

The GetKeyResponse contains the following information:

Field name

Descriptions

EteeResponseType

(extension)

This custom type is discussed in detail in the ‘Types’ section of this document. See

section “4 General information” on page 12.

SealedKeyResponse/

SealedContent

‐‐‐‐ The Following information is Encrypted with the ETK given in the Request ‐‐‐‐‐

Key In order to obtain the required symmetrical key, you must

decrypt your message by using the Crypto Library

UnsealByUnknown method.

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ END Encrypted information ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Service specification eHealth‐ETEE Unknown recipients v.1.2 20/33

5.2.2.2 Example of GetKeyResponse message

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2007 sp2 (http://www.altova.com)-->
<n1:GetKeyResponse Id="String"
xsi:schemaLocation="urn:be:fgov:ehealth:etee:kgss:1_0:protocol ehealth-etee-kgss-schema-
protocol-3_1.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:n1="urn:be:fgov:ehealth:etee:kgss:1_0:protocol">
<Status><Code>200</Code><Message> The KGSSRequest was correctly
processed.</Message></Status>

<n1:SealedKeyResponse>
<n1:SealedContent>GhjZ0dTQUxUjBsR09EbNQUFBUUNBRU1tQ1p0dU1GUXhE

Uzhi</n1:SealedContent>
</n1:SealedKeyResponse>

</n1:GetKeyResponse>

Service specification eHealth‐ETEE Unknown recipients v.1.2 21/33

6 The Crypto Library

The Crypto Library version 1.5 and above offers an Unknown Recipients functionality. This library is fully

compatible with the interfaces and functionalities that are already provided for the known recipients.

Please note that there are no separate releases for the Crypto Library containing the ‘known recipients’ and the

‘unknown recipients’ functionality. Therefore, it is in your own interest to keep the Crypto Library you are using

up‐to‐date by checking the eHealth technical library at least every month.

Encrypting and decrypting are the main functionalities offered by the Crypto Library. For known recipients, the

process is carried out by using an asymmetric encryption schema, in which anyone can encrypt by using the

recipient's public key.

Symmetric encryption is used for the functionalities of the group of unknown recipients. This means that the

same key is used for encrypting and decrypting. A symmetric encryption schema shows that this key is kept

secret between the sender and the recipient(s) of a message.

This symmetric encryption key that is used for the eHealth ETEE ‘Unknown Recipients’ is created and

exchanged by using the KGSS. Since we deal with unknown recipients, these recipients can obtain the

required decryption key from the KGSS (once identified).

6.1 SealForUnknown

6.1.1 General

You will need:

- the data to Seal;

- an Encryption Key ‐ the key provided by the KGSS GetNewKey method.

6.1.2 SealForUnknown code sample

/*
* CVS file status:
*
* $Id: SealForUnknown.java,v 1.1 2010/03/04 13:20:0 1 jeh Exp $
*
* Copyright (c) Smals
*/
package be.smals.ehealth.etee.crypto.examples;

import java.io.File;
import java.io.IOException;
import java.security.KeyStoreException;

import javax.crypto.SecretKey;

import org.bouncycastle.cms.CMSException;
import org.bouncycastle.util.encoders.Base64;

import be.smals.ehealth.etee.crypto.encrypt.DataSealer;

/**
* An example that illustrates the actions at Alice' s (sender) side in

order to

Service specification eHealth‐ETEE Unknown recipients v.1.2 22/33

* protect a message for an unknown addressee.
*
* @author jeh
*
* @since 1.5.0
*
*/
public class SealForUnknown extends AbstractExample {

/**

* @param args
*/
public static void main(String[] args) {

try {
// 0. During initialisation, Alice creates her Data Sealer

that she can use to seal data.
DataSealer alicesDataSealer = initSealing();

must be

// 1. Here Alice has a message for an unknown addre ssee that

// sealed to secure its confidentiality, integrity and

authenticity.
byte[] messageToProtect = "This is a secret message from Alice

for an unknown addressee." .getBytes();

// 2. Get a new key and it's ID from the KGSS web s ervice.
SecretKey kek = getSecretKeyFromKgss();
String kekId = getKekIdFromKgss();

kek, kekId);

// 3. Seal the dataToBeSealed
byte[] sealedData = alicesDataSealer.seal(messageToProt ect,

// 4. Write the sealed data to your transportation medium
// 4.1. As binary in a file...
File cmsFile = writeToTransportMedium(sealedData,

ExampleProperties. MSG_FROM_ALICE_TO_UNKNOWN);
System. out.println("The sealed data is written in file: " +

cmsFile.getAbsolutePath());

// 4.2 Or as Base64 encoded binary text...
byte[] encodedSealedData = Base64. encode(sealedData);
System. out.println("base64-encoded sealedData : " + new

String(encodedSealedData));
} catch (IOException e) {

System. err.println("The I/O operations during sealing the
data failed or was interrupted.");

e.printStackTrace();
} catch (CMSException e) {

System. err.println("The data sealing failed. Check the log
and root cause of the exception for details.");

e.printStackTrace();
} catch (RuntimeException e) {

// RuntimeException must not be catched, this is ju st to
document that

// RuntimeExceptions are due to :
// - improper setup of the runtime environment (con sult the FAQ

section in the Cookbook)
// - not related to the Crypto Library of eHealth E nd-To-End

Encrypton (check out the root cause).

Service specification eHealth‐ETEE Unknown recipients v.1.2 23/33

System. err.println("Your runtime environment is not
properly set up regarding dependencies " + "(Consult the FAQ), or there
are other issues not related to " + "the Crypto Library of eHealth End-
To-End Encrypton " + "(check out the root cause of the exception)");

e.printStackTrace();
} catch (KeyStoreException e) {

System. err.println("Alice's private authentication key
could not be retrieved from her Keystore.");

e.printStackTrace();
}

}

/**
* @return
*/
private static String getKekIdFromKgss() {

return ExampleProperties. getBase64EncodedKekId();
}

}

6.1.3 SealForUnknown console output

The expected output for this sealing example is:

“The sealed data are written in file: c:\javadev\prj\etee\crypto\message_from_alice_for_unknown.msg”

Note that depending on your Log4j settings, you can generate additional debugging output.

6.2 UnsealByUnknown

This method of the Crypto Library is used by the receiver of an encrypted message.

6.2.1 General

To unseal the data, you need:

- the data To Unseal;

- the Decryption key ‐ the key provided by the KGSS GetKey method.

6.2.2 UnsealByUnknown code sample

/*
* CVS file status:
*
* $Id: UnsealByUnknown.java ,v 1.1 2010/03/04 15:06 :36 jeh Exp $
*
* Copyright (c) Smals
*/
package be.smals.ehealth.etee.crypto.examples;

import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.cert.CertificateException;

import javax.crypto.SecretKey;

import be.smals.ehealth.etee.crypto.decrypt.DataAuthentica tionError;
import
be.smals.ehealth.etee.crypto.decrypt.DataAuthentica tionFailure;
import be.smals.ehealth.etee.crypto.decrypt.DataUnsealer;

Service specification eHealth‐ETEE Unknown recipients v.1.2 24/33

import be.smals.ehealth.etee.crypto.decrypt.UnsealResult;

/**
* An example that illustrates the actions at Bob's (recipient) side in

order to read and verify a sealed data message from Alice (sender).
*
* @author jeh
*
* @since 0.8.5
*
*/
public class UnsealByUnknown extends AbstractExample {

/**

* @param args
*/
public static void main(String[] args) {

try {
// 0. During initialisation, Bob creates his DataUn sealer

that he can use to
// decrypt and verify incomming sealed data.
DataUnsealer bobsDataUnsealer =
initUnsealing();

// 1. Now Bob receives some 'sealed data'
byte[] sealedData =

getSealedData(ExampleProperties. MSG_FROM_ALICE_TO_UNKNOWN);

SecretKey kek = getSecretKeyFromKgss();

// 2. Unseal the received message
UnsealResult rslt = bobsDataUnsealer.unseal(sealedD ata, kek);

succeeded

failures

// 3. Process the result of the unseal operation
if (rslt.hasUnsealedData()) { // 3.A. The decryption operation

if (rslt.isValid()) { // 3.A.A. There are no errors or

// 3.A.A.1. Get the author
System. out.println("from author: " +

rslt.getAuthenticationCertificate().getSubjectDN()) ;
// 3.A.A.2. Get the unsealed data
InputStream unsealedDataStream =

rslt.getUnsealedData();
byte[] unsealedData = getBytes(unsealedDataStream);
System. out.println("unsealed data: " + new

String(unsealedData));

} else { // 3.A.B. The data authenticity is not OK
// 3.A.B.1. Get the DataAuthenticationErrors or

DataAuthenticationFailures
// and do your specific security failure or error

processing
// BEFORE reading the unsealed data (otherwise you will

have an RuntimeException
for (DataAuthenticationError error :

rslt.getDataAuthenticationErrors()) {
// e.g.
System. err.println("error: " + error);

Service specification eHealth‐ETEE Unknown recipients v.1.2 25/33

}
for (DataAuthenticationFailure failure :

rslt.getDataAuthenticationFailures()) {
// e.g.
System. err.println("failure: " + failure);

}
// 3.A.B.2. After checking the errors and failures you

can get the unsealed data
InputStream unsealedDataStream =

rslt.getUnsealedData();
byte[] unsealedData = getBytes(unsealedDataStream);
System. out.println("unsealed data: " + new

String(unsealedData));

// 3.A.B.3. and in most cases also the author
if

(!rslt.getDataAuthenticationFailures().contains(Dat aAuthenticationFailure. A
UTHENTICATION_CERTIFICATE_EXPECTED_BUT_NOT_PRESENT)) {

System. out.println("author certificate: " +
rslt.getAuthenticationCertificate());

}

data

}
} else { // 3.B the decryption failed, there is no decrypted

System. out.println("the msg could not be unsealed,
because:" + rslt.getDecryptionFailure());

}

} catch (CertificateException e) {
System. err.println("creation of Bobs DataUnsealer failed:" +

e.getStackTrace());
} catch (KeyStoreException e) {

System. err.println("creation of Bobs DataUnsealer failed:" +
e.getStackTrace());

} catch (NoSuchAlgorithmException e) {
System. err.println("creation of Bobs DataUnsealer failed:" +

e.getStackTrace());
} catch (IOException e) {

System. err.println("creation of Bobs DataUnsealer failed:" +
e.getStackTrace());

}
}

}

6.2.3 UnsealByUnknown console output

Note: depending on your Log4j settings, you can generate additional debugging output.

“from author:
CN=NIHII\=00000000101,OU=NIHII\=00000000101,OU=Alic e,OU=eHealth-
platform Belgium,O=Federal Government,C=BE

unsealed data for unknown recipient: This is a secr et message from Alice
for an unknown addressee.”

Service specification eHealth‐ETEE Unknown recipients v.1.2 26/33

6.3 Error and failure messages

There are additional error messages that may occur when trying to encrypt or decrypt information for

unknown recipients. A symmetrical key is referenced as a ‘secret key’ in the error messages (the key for

unknown recipients is secret, whereas the terminology ‘public’ and ‘private’ keys is used for known recipients).

The given decryption key can not decrypt the KEKRecipientInformations in the EnvelopedData

- SECRET_KEY_CAN_NOT_DECRYPT_KEKRECIPIENTINFOS,

The EnvelopedData do not contain a KEKRecipientInformation

- ENVELOPEDDATA_CONTAINS_NO_KEKRECIPIENTINFOS

Service specification eHealth‐ETEE Unknown recipients v.1.2 27/33

7 Implementation aspects

7.1 Development and test procedures

Once a KGSS client has been developed that can connect to our web service in the acceptance environment,

integration and acceptance tests can begin. We ask to perform tests for at least one month. The reason behind

this is to protect the production environment to the fullest against any incidents.

When developing an application that will use the ETEE infrastructure, you must notify eHealth by a written

document at least 3 months before the scheduled production date. This is required for efficient capacity

planning and will allow the eHealth platform to assure the eHealth SLAs. Please contact the contact center for

more information.

If everything is correct, eHealth and the partner agree on a release date. eHealth should prepare the

connection to the production environment and provide the production environment URL.

During the release day in acceptance, the partner in the health care sector provides feedback on the release

test results to the designated eHealth contact(s). You will be provided with a list of designated contact(s) for

your project.

A contract must be signed by which you confirm as a partner that the integrator will also observe the eHealth

rules in case of new releases of his software.

7.2 Request for release in production

If the acceptance tests are successful, the partner in the health care sector sends the test results and test

performance results, as well as samples of ‘request’ and ‘eHealth answer’ to their eHealth designated

contact(s) by email.

The following items must be checked before you can access the production environment:

1. request New keys from the KGSS (GetNewKey);

2. get existing Keys from the KGSS (GetKey).

7.3 Maintenance, support and monitoring of the service

Before deploying an application or using the web service in production, the partner in the health care sector

who is using the web service for one of its applications should always first run tests in the acceptance

environment and then release any adaptation to his own application. In addition, he should inform eHealth

on the changes and their test period.

When developing an additional use case, based on an existing integration, eHealth must be informed at least

one month in advance and be provided with a detailed estimate of the expected load. This will ensure an

effective capacity management.

In case of technical issues on the web service, the technician of the partner in the health care sector may get

support from eHealth.

If eHealth finds a bug or vulnerability in its software, the partner has to update the application with the latest

version of the software within 10 business days after a notification has been sent by the eHealth newsletter.

If the partner finds a bug or vulnerability in the software delivered by eHealth, he must immediately contact

and inform eHealth and he is not allowed to publish this bug or vulnerability by any means.

Service specification eHealth‐ETEE Unknown recipients v.1.2 28/33

8 Errors and solutions

8.1 EteeResponseType

The EteeResponseType has status codes. These status codes can be:

- 200 The KGSSRequest was correctly processed.

- 400 The KGSSRequest SOAP message is incorrect.

- 500 The KGSSRequest could not be completed due to an internal server error.

8.2 Invalid Key Size

Error messages referring to an ‘illegal key size’ commonly indicate that there is a problem with this

prerequisite: it means that the maximum allowed key size is set too small to allow the eHealth Crypto Library to

work. Please consult the prerequisites section “3.1.2 Java Cryptography Extension (JCE)” on page 9.

Service specification eHealth‐ETEE Unknown recipients v.1.2 29/33

9 Risks

Your PC needs to be properly secured. The computer has a quality and up‐to‐date antivirus software and a

network firewall.

Service specification eHealth‐ETEE Unknown recipients v.1.2 30/33

10 Contact

The eHealth platform help desk is available for any questions or problems you may have.

You can use a contact form that is available on the eHealth platform portal or contact the eHealth platform by

phone (+32 2 788 51 55).

Contact form D https://www.ehealth.fgov.be/nl/contactform/website/home/contactform.html

Contact form FR https://www.ehealth.fgov.be/fr/contactform/website/home/contactform.html

- For users in production, please contact:

support@ehealth.fgov.be

- For users in acceptation, please contact info@ehealth.fgov.be.

Service specification eHealth‐ETEE Unknown recipients v.1.2 31/33

11 Licenses

In order to respect the licence agreement of third party software providers, the eHealth platform is requested

to publish the following information:

11.1 Apache

Copyright © 2009 ‐ 2010 eHealth‐platform

Licensed under the Apache License, Version 2.0 (the "License");

You may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE‐2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed

on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the

License for the specific language governing permissions and limitations under the License.

11.2 Bouncy Castle

Copyright © 2000 ‐ 2009 The Legion Of The Bouncy Castle (http://www.Bouncycastle.org)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of

the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Service specification eHealth‐ETEE Unknown recipients v.1.2 32/33

12 Annex

Communication regarding the Java End‐To‐End Encryption Library and the .Net

Library for End‐To‐End Encryption

The eHealth platform offers its users access to the Java End‐To‐End Encryption Library (Java ETEE

Library). This library, which is distributed under a free license, is available on the eHealth website

at the following address: http://www.ehealth.fgov.be.

Certain elements of the Java ETEE library of the eHealth platform use external components that

are distributed under the Apache license and under the license distributed with the software

« The Legion of The Bouncy Castle ».

In addition to the rules specified in the licenses mentioned above, the user must also take into

account the following independent and additional stipulations regarding the guarantee and

liability of the managers, administrators, employees and staff members of the eHealth platform.

When adapting a free software package, the eHealth platform makes every effort in order for

the software to function correctly, nevertheless without assuming any obligation of result with

respect to this matter.

The user commits himself to use the Java ETEE library that is available to him in the most correct

and adequate way possible and to provide the eHealth platform, if necessary, with all the

necessary information in order to solve problems concerning the use of the library.

Since the use of the Java ETEE library is free, the eHealth platform can on no account be held

responsible for any kind of damage, direct or indirect, secondary or accessory, material or moral,

caused to the user or to any third party, as a result of the use or the impossibility to use the

library.

The Java ETEE Library must not be confused with the .Net Library for End‐To‐End Encryption

which was developed by Siemens on behalf of Microsoft.

The .NET ETEE Library, an adaptation of the eHealth .Net Java ETEE Library, is available on the

website http://etee.codeplex.com/. The library is distributed in compliance with the terms of the

GNU Lesser General Public License. It is free and available to anyone who wishes to use it. The

documentation available in the library was written and published by Siemens. Users who want

more guarantees can conclude a contract with Siemens or with any other service provider. In

accordance with the conditions contained in this contract, the users of the .NET ETEE Library will

only have access to the technical support offered by the concerned service provider.

The eHealth platform does not offer any technical support with regard to the .NET Libraries.

The eHealth platform can therefore in no event be held responsible for any damage, direct or

indirect, secondary or accessory, material or moral, caused to the user or to any third party, as a

result of the use or the impossibility to use the library.

Questions or remarks about the .NET ETEE Library can be posted on this website

http://etee.codeplex.com/.

Service specification eHealth‐ETEE Unknown recipients v.1.2 33/33

