eHealth platform Services Connectors
Introduction Guide
Version 4

This document is provided to you free of charge by the

eHealth platform

Willebroekkaai 38 — 1000 Brussel
38, Quai de Willebroek — 1000 Bruxelles

All are free to circulate this document with reference to the URL source.

Table of contents

LI Lo 1 =03 e T =T 43t 2
1. Document ManagemeNntcceuueeiiiiiiiiiinieiiiiiiiieiiiiinieeiieeirieessasissteeasasssiessitessassssssssesssanns 4
1.1 DOCUMENT NISTOTY .iviiiiiiiieeiiee ettt s e st e st e st e e st e e sabe e s abeesabeesabeesabeesateesabeesabeesasaenaseens 4
2. g Yo T 10T 1 o o 5
2.1 GOAl OFf the AOCUMENT ... st e s b e s be e s be e sabeesbeesabaesbeesane 5
3. YT o « T o Y 6
3.1 For issues in production

3.2 FOr iSSUES iN @CCEPTANCE ..eiiiiiiiiiiiiii e e s s e e s enn e e s snaeeeeas 6
33 F O DUSINESS ISSUBS ..eiitierireeriiie st sttt sie st e st e st e st e e sabe e st e e s beesateesabeesabeesabeesabeesabeesaseesabaesaseesabaenaseens 6
3.4 (01T o 1) 1o | T PSPPSRt 6
4. Architectural OVEIVIEW......uueeiiiiiiiiiiiiiiiiicneercc s sass e sass e s s s s s s sannneens 7
4.1 Overview

4.2 Principles

5. L ET = o181 0 T3 oo T T 1= o o 9
5.1 A=Y 3 <1V =Y o FO PR SUPRPRROt 9
1. Installation of the VM

2. Download the correct version of the connector

3. Include the required dependencies in your development projectccoceeeveerieeeieenieeeseesiieeeseenae 10
4, Copy all key stores to @ directory in YOUr Projectocueeceieiieriiienieeseeerree et 10
5. Configure the ProPerty file....... e e et e e et e e e e sate e e e easae e e saaeeeens 10
6. Create custom code using the CoNNECLOr APL.......coc.ui ittt 10
5.2 PrE-TEOUISITES it e e e e e e e e e e e e 10
5.21 ViU IMACRINE ..ttt ettt et e e e sab e e s st e e e s bt e e e s sabeeeseasbeeesnneeas 10
5.2.2 (D L=T 01T g T 1=T o 1ol 1= PSRRIt 11
5.2.3 LN =T =) oo T o [L= ot AV 1 PR 11
5.24 elD middleware and Card FEATENccu.uiii ittt st e e e st e e et e e seabee e e sareeeeas 11
5.2.5 TEMPORARY FILES ... oottt ettt ettt ettt e s it s sat e s at e e sae e e s abeesaee e sabe e bt e e sabeebeeesnneebeeesaneenneas 11
6. Properties CONFIGUIratioNcccciiiiiiiiiiiiiiiiiininnnnnnrrsssssss s s s s s s s s s s s s s ssnnns 12
6.1.1 ConfigUuration MOAUIES.......ccuuiiiiiiee e et eette e e e e bb e e e eetba e e eeabaeaesbbeeeesstseeeensaeaesseeaeans 12
6.2 ENdPOiNts Of tThe WED SEIVICESuviiiiiiee ettt et e et e e e e eata e e e s ba e e e entaeeeeanaeas 12
6.3 GV e L ole Yo\ 7 ={¥] = o TSR 13
6.4 Session management CONTIGUIATIONccccuiiiiiiiee ettt e e et e st e e e e ate e e eeabaee e eabaeeeans 13
6.5 BUSINESS SEIVICE SPECIfiC PrOPEITIES . .ccuvieieiiieeeeiie e ettt e s tee et e e e e sae e e et e e s saaee e e sbaeeeesreeesnseeas 14
7. o T o N 15
7.1 HOW T0 SET UP @ USEI SESSION ..uuviiiiieiiieiiiiiteeseieiitttteeeeesessataeeeesesssssssareeesssssssssssseesesssssssnseeeeesssnssnnnees 15
7.2 HOW t0 iNVOKE @ DUSINESS SEIVICE ...eiiiiiiiiiiiiieieiit ettt st e s bee e s st e e e sanaeas 15
7.3 How to use the generic services of the technical connNector?cccccoociiiieciii e, 17
7.4 How to change a property at runtime

7.5 How to handle a java.util.Collection

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 2/28

7.6 How to exite the JVM correctly through IKVIMc.uiiiiiiie et 20

7.7 How to use the elD on Windows 8 through IKVIMcooiiiiiiiiiiiiiecieee e 20
7.8 How to overload an implementation in the CoONNECLOrcoiviiiiiiiiee e e 20
8. Connecting to a MyCareNet asynchronous Service.........ccccviiiiiiiiiiiinininnieeen, 22
8.1 (@0 Yo [y & [4] o] L= SR 22
8.2 Usage and configuration PAarameEtersccueeecciiieiciiee e eesiee e srree e sire e e sere e e seaaaeeesataeeessraeesnnaeas 22
8.2.1 Example configuration for iNVOICINGooiieiiiiiiieii e e 22
8.3 (UL 1= 1 PP P P PPPTPPPPPPPTPPPPRt 23
8.3.1 CrEAtE T SEIVICE ..uviiiiiiie ettt e st e sttt e e st e e e s s be e e saabteeesabbeeeestaeesnnneeessnseeeenns 23
8.4 (g L (I =To [U =] PO P TP UPPPRPTPPP 23
8.4.1 CrEate POST FEOUESTS oot e e et et e e et e e e e e e e e e e e e e e aaaaaes 23
8.4.2 Create ET FEOUEST ..eiiiiiiiii ittt e s s e s e st s nr e e sra e e 24
8.4.3 (O N olo oV T a (W =Te [=) AP 25
8.5 (07 110 =14 Vo Lo L PSSR RTPPIN 25
8.5.1 WSAAArESSINGHEAUET «...ceouviiiiiiiiiieeiee ettt et s e et e st e et e st e e bt e st e e saseesabeesnseesabeenaneens 25

8.5.2 (L0 1) S
8.5.3 (G| Nt

854 CONFIRM

8.6 Handle and validate rESPONSESciiccuiei ettt e e e e e e e s tre e e etta e e seabaeeesabaeeeestaeeennsaeas 26
8.6.1 HaNAIE POSE FESPONSE ...ttt ettt ettt ettt e b e e bt e s et e s b et e sabe s bt e e sbbe e bt e esaeeebeeennneenees 26
8.6.2 HaNAIE SO MESPONSE ittt ettt et ettt e at e e bt e s bt e s b et e sat e e bt e e sbee e bt e e sneesbeeesnneennees 27
8.6.3 HaNdIe CONFIFM FESPONSE ...ueiiiiiee ettt e s e e et e e e e eaba e e e s bb e e e eaba e e s aaaeeesabaeeeessaeesnreeas 27
9. KNOWN lIMITAtioNSceiiieiiiiiiiiiiitiniteniete et sas e s s ass e s sanes 28
9.1 Limitations of Java Architecture for XML Binding (JAXB)ccccveeiuieiiieenieesieeeie e e eeeeesve e e sae s 28
9.2 Limitations OF IKVIM..c...eiieeeieeeeee ettt sttt st s et e s it e bt e st e e ae e e sateesbeeesnneeneas 28
9.3 Limitations Of CONNMECLON ..c..eiiiiiieiieeee et st sb bttt sbe e b e b nre s 28

To the attention of: “IT expert” willing to integrate this web service.

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 3/28

1. Document management

1.1 Document history

Version Date Author Description of changes / remarks

1.0 04/03/2012 eHealth platform First version of the document, distributed with
release 3.0-beta.

1.1 15/05/2013 eHealth platform Second version of the document, distributed with
release 3.1-beta. No major change.

1.2 28/08/2013 eHealth platform Second version of the document, distributed with
release 3.2-beta. Add of paragraph 2.2.5, update of
paragraph 4.3..

1.3 05/12/2013 eHealth platform Revision of the document, distributed with release
3.3- beta. Update Section 3 and 5

1.4 30/04/2014 eHealth platform Revision of the document, distributed with release
3.4- beta. Update paragraph 2.1

1.5 15/05/2014 eHealth platform Revision of the document, distributed with release
3.4- beta. Adding paragraph 4.7

1.6 15/06/2014 eHealth platform Revision of the document, distributed with release
3.4- beta. Adding paragraph 4.8

1.7 12/02/2014 eHealth platform Revision of the document, distributed with release
3.4- beta. Adding paragraph 4.8

1.8 31/03/2015 eHealth platform Revision of the document, distributed with release
3.4- beta. Adding paragraph 5

1.9 13/10/2021 eHealth platform Revision of the document, distributed with release 4

o o Miicar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 4/28

2. Introduction

2.1 Goal of the document

Main objective of this document is to provide a technical overview of the usage of the eHealth connector
(version 4). The goal is to guide an application developer of an end-user software application on how to use,
configure, extend and integrate his application with the eHealth connector.

This document is not:

e A complete development cookbook. This document is targeted to skilled Java and/or .Net
developers capable of integrating an external framework/component;

e Adevelopment cookbook to invoke eHealth-platform services. For such information, the reader
should consult the dedicated cookbooks of those services.

e The API (Application Programming Interface) description of the eHealth connector. For this
purpose, the reader is invited to directly consult the available “Javadoc”.

e Every release archive of the connector contains a release notes file with the changes that are
made compared to the previous release. It is recommended to read this file before
using/installing the new version of the connector.

This document contains five different chapters. The first chapter describes the general architectural principles
and the architectural overview. The following chapter, “How to use the connector” gives more information
about the content and structure of a release archive, a step by step description how to integrate the connector
in your development environment and the prerequisites of the connector. The next chapter describes in detail
the different options in the configuration of the connector. The best practices on how to create a session,
invoke a business service, the use of the generic service can be found in chapter four. The last chapter
describes all the known limitations of the connector.

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 5/28

3. Support

3.1 Forissues in production

eHealth platform contact center:
. Phone: 02 788 51 55 (on working days from 7 am till 8 pm)
. Mail: support@ehealth.fgov.be

. Contact Form :

- https://www.ehealth.fgov.be/ehealthplatform/nl/contact (Dutch)
- https://www.ehealth.fgov.be/ehealthplatform/fr/contact (French)

3.2 Forissues in acceptance

Integration-support@ehealth.fgov.be

3.3 For business issues

. regarding an existing project: the project manager in charge of the application or service

. regarding a new project and other business issues: info@ehealth.fgov.be

3.4 Certificates

. In order to access the secured eHealth platform environment you have to obtain an eHealth platform
certificate, used to identify the initiator of the request. In case you do not have one please consult the
chapter about the eHealth Certificates on the portal of the eHealth platform

https://www.ehealth.fgov.be/ehealthplatform/ni/ehealth-certificaten
https://www.ehealth.fgov.be/ehealthplatform/fr/certificats-ehealth
. For technical issues regarding eHealth platform certificates

Acceptance: acceptance-certificates@ehealth.fgov.be

Production: support@ehealth.fgov.be

o o Miicar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 6/28

mailto:support@ehealth.fgov.be
https://www.ehealth.fgov.be/ehealthplatform/nl/contact
https://www.ehealth.fgov.be/ehealthplatform/fr/contact
mailto:Integration-support@ehealth.fgov.be
mailto:info@ehealth.fgov.be
https://www.ehealth.fgov.be/ehealthplatform/nl/search?q=&filter%5Bplatform_service%3A19842c7fad26fe4e90179efc7895851fb9f086fb%5D=on
https://www.ehealth.fgov.be/ehealthplatform/fr/search?q=&filter%5Bplatform_service%3A19842c7fad26fe4e90179efc7895851fb9f086fb%5D=on
mailto:acceptance-certificates@ehealth.fgov.be

4. Architectural overview

4.1 Overview

This document describes the usage of the eHealth connector that facilitates and simplifies the interaction and
usage of eHealth-platform services and other value-added services.

The main objective of the eHealth connector is not only to hide the technical complexity of accessing these
remote services, but also certain business complexities. The services and operations provided via this library
are grouped in functional blocks that correspond with real end-user related functions. One operation may
involve multiple low-level technical services, both local and remote, which are hidden for the client application
developer. In addition, an eHealth-platform session is created, maintained and shared as part of this connector.

’

' » Secure Token
m ~ — Service
5 eHealth Box

@5 © g Health

Chapter IV ~ SESSION MGNT

(i

=

E CIVARS = GENERICSERVICE > Timestamping
S ~ -

£

< & RECIPE - E TSA KEYDEPOT
w < = -

o

< = —

= = N

2 E EHBOX - a KEYDEPOT — KGSS

=y

Z| INTRAHUB KGSS

FTT

~EEED e
B8 1 cwics

Figure 1: Overview architecture connector

Although a Java and Microsoft .Net version of the Connector are available, this document is written in a
technology neutral manner. Actual code examples will be provided both in a Java and .Net flavour. Every
release archive business or technical is available in a Java and .NET version. The archive is always self-
containing, all the needed dependencies and examples are provided.

There are 2 types of building blocks, the technical and the business building blocks.. The technical blocks are
there for general purpose and can be used by other building blocks. The technical blocks do not interact witch
each other. Examples of these blocks are the session management and the services needed for end to end
encryption. Other services like the elD reader and configuration framework are also ‘technical’ building blocks.
The second type of building blocks are the business blocks. Those blocks interact with a service exposed for
target user group. Those services can be exposed via the eHealth Service Bus. More information on the
structure of a business block is provided is section 7.2.

4.2 Principles

In order to have a good understanding of the provided functionality and working of the connector, please
review the following base principles that have been used to define the different services.

. Target user group: the connector is aimed at software developers of client applications for the
given target group (for example: general practitioner) that are willing to integrate eHealth-
platform value- added services in their end-user applications.

. Service simplification: the connector provides a simple way to invoke remote eHealth-platform
base and value-added services by hiding the business/functional and technical complexity. A
typical service provided by the Business connector invokes multiple local and remote services,

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 7/28

for example, Session Management and end to end encryption related services, in order to
achieve the assigned goal

. Data simplification: the input and output parameters for each of the operations are simplified
to only provide the business relevant data. General or technical parameters are hidden and are
added automatically by the connector.

. Session management: an end-user must possess a valid session initiated via the connector’s
Session Management component. It is advised to create a session as soon as the client
application embedding the connector is launched.

. Builder pattern: with every complex object needed by the connector a builder with associated
BuilderFactory is provided. Such a builder can generate all of the needed objects and takes the
relevant parameters as input.

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 8/28

5. Use of the connector

The connector is available in a Java and a Microsoft .NET version. The Java version is provided as Java Archive
(JAR). The Microsoft .NET version is proved as a DLL. However the API for both versions is identical.

The connector is depending on a series of external components for its correct functioning. As part of the
distribution, external dependencies are includes. The entire list of dependencies could be found in the lib
directory of the connector.

Besides a series of external dependencies, the connector requires a configuration file containing a limited
number of properties (for example: general information related to the end-user(s) like NIHII, name and SSIN
and certificate configuration). In the archive of the connector you will find an example of such a configuration
file. The empty properties are user dependent properties. Before using the connector you must fill in those
properties. If you want to change the behaviour of the connector you could change prefilled properties.

The following documentation is available in addition to this cookbook:
e An APl archive describing the classes and services as exposed by the connector.
e Arelease package (as an archive file) containing the following directories:
o A config folder containing the following files:
= be.ehealth.technicalconnector.properties: the sample properties files

= be.ehealth.technicalconnector-test.properties: the properties needed to
execute the tests

= a2 P12 directory containing 3 JKS’s files
e truststore.jks contains all the certificates trusted for SSL communication
e caCertificateKeystore.jks contains all the certificates trusted by the ETEE.
e tsacertificate.jks contains all the certificates trusted for Timestamping
o Alib folder containing the connector and its external dependencies (classpath)

o An example folder which contains the examples of use of the connector. This
sample/test code functions as reference implementation.

o Alicense and notice directory containing the licenses and notices as specified by the
licenses of the connector dependencies.

o Atest-lib folder containing the external dependencies needed for testing,
using and integrating the Connector.

5.1 Step by step

Following steps must be executed properly to ensure the correct working. Each step is detailed in the next
sections.

1. Installation of the VM

Install Java or .NET on your system (if not yet installed), see the pre-requisites section of either Java or .NET
for more details.

2. Download the correct version of the connector

The Business connector or the technical connector must be downloaded. Every archive of the connector
contains the dependencies it needs. The business connector contains also the required technical connector

version.

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 9/28

3. Include the required dependencies in your development project

Include all the third party dependencies in your project. All those dependencies are present in de lib and
test- lib directory of the connector.

4. Copy all key stores to a directory in your project

At least 3 key stores are needed for the correct function of the complete connector (depending on the
services you will integrate). See section “Properties — Keystore configuration” for more details. The key
stores are:

e Certificate Authority Keystore (caCertificateKeystore.jks)
e SSL Truststore (truststore.jks)

e Identification eHealth Certificate Keystore

e Holder-Of-Key eHealth Certificate Keystore

e Encryption eHealth Certificate Keystore

Those key stores must be copied to the directory you specified in the configuration file (property:
KEYSTORE_DIR) and the directory must be included and accessible in your development project.

5. Configure the property file

The property file must be configured as described in section “Properties Configuration”.

If the examples need to be run, the additional test configuration is required as well. The configuration file(s)
must be included in your project.

It is advised to copy the “config” directory that is included in the distribution to your project and include it
as a part of your run-time configuration (e.g.: for Java this means putting the entire config folder on the
class path). This directory already contains a basic properties file and a directory for your key stores with
the Certificate Authority Key store and SSL Trust store already in place.

If the above method is used, in combination with the proposed folder layout, the configuration file included
in the distribution config folder does not need to be updated and can be used out of the box to go to the
acceptance test environment end-points (production end-points need a small configuration change).

Most properties in the configuration file are user/package independent but some properties are not. For
example every property that starts with user, session manager, pharmacy and pharmacy-holder are user
dependent and the properties that start with package, mycarenet.licences are package dependent. Those
parameters are empty within the distributed property file and must be correctly filled out to have the
correct behaviour of the connector.

6. Create custom code using the Connector API

Start writing your own code that uses eHealth-platform and value-added services through the Business
connector APl. The examples section at the end of this document provides a complete code sample for
invoking one of the services.

5.2 Pre-requisites

5.2.1 Virtual Machine

The Java Runtime Environment (JRE) 1.8 or higher must be installed on each system on which the Java
version of the connector is used, for either development or production usage.
.NET Framework 4.5 must be installed on each system on which the .Net version of the connector is used,

for either development or production usage.

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 10/28

5.2.2 Dependencies

The connector also requires certain dependencies for its proper functioning. These libraries are mainly used to
deal with web services and security. See the content of the lib and test-lib folders for more information.

5.2.3 Internet connectivity

The connector invokes multiple services offered by the eHealth-platform (and other service providers). These
services are invoked over the Internet via HTTPS. The computer or server on which this connector for General
Practitioners is executed must therefore have access to the Internet.

If you need a proxy for connecting to the internet, please be sure that the ConfigurationModuleProxy module is
correctly loaded. See the properties file for more information on how to configure this module.

5.2.4 elD middleware and card reader

The JAVA connector is using commons-eid and associated implementation to interact with the elD, the NET
connector is using native .NET code. Theconnector-technical-core.dll contains an implementation based on the
elD middleware.

5.2.5 TEMPORARY FILES

The connector places some files in a temporary directory for temporary storage purposes. This is done with a
java temporary file, which is automatically deleted when the JVMshuts down.

Sometimes the IKVM implementations do not do this shutdown correctly and the files are not deleted. To
prevent this you could execute a System.exit() command as last statement of your code when exiting the
connector.

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 11/28

6. Properties configuration

Every connector is depending on the unified configuration file, which includes eHealth-platform base services
and Session Management related properties. Examples: key store location, connection details, environment
details, etc. The properties configuration describes a minimal configuration needed to use the connector in
your own development project.

For Java the default location of this properties file is the class path itself. For .NET version the default location is
the directory of the different dll’s. The default location can be changed by executing the following code
snippet.

Note: Be sure that this is executed before the first usage of the connector; otherwise the default location is
loaded.

JAVA

ConfigFactory.setConfigValidator (“location of the properties file”);

.NET C#

ConfigFactory.setConfigValidator (“location of the properties file”);

Sample files are provided as part of the distribution and can be used as a starting point. The following two
sections describe the configuration files in more detail.

6.1.1 Configuration modules

It is possible to automatically load configuration modules when the configuration is initialized. Those modules
are defined in the configuration file. The properties must start with connector.configmodule followed by a
number. Those numbers must start with 1 and increment with 1, gaps between two entries are not allowed.

The connector ships with

e alogging module (ConfigurationModuleLogging)

e a proxy support module (ConfigurationModuleProxy)

e amodule that redirects the System.out to the logging framework (ConfigurationModuleSysOut)

e amodule that changes the location of the trust store (ConfigurationModuleSSL)

e amodule that links the current class loader to the current thread, only needed for the .NET
connector (ConfigurationClassloader)

e amodule that changes the default language of your runtime environment
(ConfigurationModuleDefaultLanguage)

e amodule that loads XmlISec 1.5 instead of the default XmISec implementation of your runtime
environment (ConfigurationModuleXmlSec)

Additional modules can be written by implementing the ConfigurationModule interface.

6.2 Endpoints of the web services

The properties that start with endpoint.* are the addresses of the end points of the web services expose by
eHealth-platform. The URL’s for the acceptance test environment are included in the distribution (only to be

used for testing purposes, not for production usage).

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 12/28

Note: These properties must be changed into access production end points.

6.3 Key store configuration

All key stores (P12/JKS) the connector uses need to be stored in the same directory: the KEYSTORE_DIR
property points to this directory. This location should be relative to the root of the project hierarchy or an
absolute path on the file system.

The key stores that should be in this directory are:

e Certificate Authority Keystore (*.jks)
The name and password of this key store must be specified in the following
properties CAKEYSTORE_LOCATION and CAKEYSTORE_PASSWORD

e SSL Truststore (*.jks)
The name and password of this trust store must be specified in the following
properties truststore_location and truststore_password

o Identification Certificate Keystore (*.p12): a key store used to identify the ‘end-user’ towards
the eHealth SecureTokenService. In case of Session creation with elD this property will be
ignored. The name of this key store must be specified in the property
sessionmanager.identification.keystore

e Holder-Of-Key eHealth Certificate Keystore (*.p12): a key store used to secure the
communication between the software and services with added value. The certificate
inside this key store must be an eHealth ETEE certificate.
The name of this key store must be specified in the property sessionmanager.holderofkey.keystore.

e Encryption eHealth Certificate Key Store (*.p12): a key store used to seal and unseal the ETEE
messages. The certificate inside this key store must be an eHealth ETEE certificate. The name of
this key store must be specified in the property session.manager.encryption.keystore.

Information regarding requesting and using eHealth certificates can be found on the eHealth portal.(See § 3.4)

6.4 Session management configuration

The Session Management component takes care of the end-user’s session, so that secured eHealth services can
easily be accessed through the connector. A session should be created before using any other service of the
connector. The session will be cached for re-use until it is expired.

The Session Management offers two ways of creating a session:
e Normal session: the elD is used, the user will be requested to insert the elD card in the card reader
and enter his/her PIN code.
e Fall-back session: a personal eHealth-platform issued certificate is used.

In addition to creating session, the Session Manager can also load in a session that has previously been stored.
If a session is no longer needed it should be unloaded via the Session Manager. To check if there is a valid
session active for the Business Connector to use, the Session Manager has a “hasValidSession” operation.

In short, before invoking any of the business services, the Session Manager should be invoked to make sure
that there is a session.

The behaviour of the session management is configurable through the configuration file. In the request the
connector sends to the SecureTokenService 2 types of attributes are present: attributes giving more
information on the subject (samlattributes) and attributes that are verified/certified by
eHealth(samlattributedesignators).

The subject attributes must start with sessionmanager.samlattribute followed with an incrementing number.
For his type of attributes 3 types of information must be present after the = sign. Each information must be
separated with a comma. First of all, the namespace of the attribute is normally this namespace:
urn:be:fgov:identification-namespace. The second information is the name of the attribute, and finally the last

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 13/28

information is the value of the attribute. If the value is already present in the configuration file, ${key} could be
used to dynamically load the property.

The attributes that must be verified must start with sessionmanager.samlattributedesignator followed with an
incrementing number. This type of attribute requires only 2 types of information after the = sign, the
namespace and the name of the attribute.

6.5 Business service specific properties

Some business services require additional information in the configuration file. For example
e the default hub that must be used to connect to.
e user information needed by the session management
e Activating or de-activating the incoming message validation.
e the licence information needed by the ChapterlV web service

Those specific configurations will be documented in the configuration file in the archive. It is important that
those sections are correctly filled in otherwise the business service will not function correctly.

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 14/28

7.1 How to set up a user session

Create a session at the beginning of your application life cycle and keep the resulting SAML Token on a secured
location if you wish to re-use it later.

Use the hasValidSession method before invoking a method on the business service, this will ensure that a valid
session is available. This will result in less errors because invoking a business service without a session is not
possible

Unload a session before creating a new session, use this in combination with the above remark (use the
hasValidSession method) to make sure you are not overwriting an active session by accident (checking the
hasValidSession method) and to make sure that the new session can start clean (unloading the session).

There are 2 ways to setup a valid user session: one with a Belgian elD and another with a Personal eHealth
certificate. The first one should be used by default, only in case of loss/theft of the elD the fall back session
should be used. The lifetime of session obtained by the fall-back way is shorter than one obtained with an elD.

JAVA

import be.ehealth.technicalconnector.session.SessionManager;

String hokPassword = “password of Holder-Of-Key eHealth Certificate Key Store”;
String persPassword = “password of Personal eHealth Certificate Key Store ”;
SessionManager sessionmgmt = Session.getInstance();
if (!sessionmgmt.hasValidSession()) {

sessionmgmt.createSession (hokPassword, persPassword) ;
lelse{

sessionmgmt.unloadSession () ;

sessionmgmt.createSession (hokPassword, persPassword) ;

.NET C#

using System;
using be.ehealth.technicalconnector.session;

String hokPassword = "password of Holder-Of-Key eHealth Certificate Key Store";
String persPassword = "password of Personal eHealth Certificate Key Store ";
SessionManager sessionmgmt = Session.getInstance();

if (!sessionmgmt.hasValidSession()) {

sessionmgmt.createSession (hokPassword, persPassword) ;
telse(
sessionmgmt.unloadSession () ;

sessionmgmt.createSession (hokPassword, persPassword) ;

7.2 How to invoke a business service
Before invoking a business service, you should verify whether there is an active valid session. The structure of

every business service is the same. It contains builders, exceptions and session. The other packages are
normally for inside use. The package builders contains the necessary request and response builders. A builder

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 15/28

can be obtained by invoking the corresponding static method in the BuilderFactory. The package exceptions

contains all the specific exceptions that the business service may throw. The package session is the most

important package and it contains all the available web services and methods. In the session package a class
that ends with ServiceFactory is present. This class contains some static methods in order to obtain the correct

web service stub within a session.
This logic is illustrated below with the intrahub service.
1. Checkif thereis a valid session
2. Obtain a request builder and create the request
3. Invoke the web service and obtain the response
4. Analyse the response by using the response builder.

JAVA

import be.ehealth.technicalconnector.session.SessionManager;

import be.ehealth.technicalconnector.session.Session;

SessionManager sessionmgmt = Session.getInstance();
if (sessionmgmt.hasValidSession()) {
BuilderFactory factory = BuilderFactory.getInstance();

RequestBuilder reqBuilder = factory.getRequestBuilder () ;

String hcpartyXML = "";
HCPartyIdType hcparty = regBuilder.buildHCPartyIdType (hcpartyXML) ;

HubService hubs = HubSessionServiceFactory.getHubService() ;

ConsentHCPartyType respCons = hub.getHCPartyConsent (hcparty) ;

ResponseBuilder respBuilder = factory.getResponseBuilder () ;
String consentXML = respBuilder.buildConsentHCPartyTypeResponse (respCons) ;

// business logic

.NET C#

using System;
using be.ehealth.technicalconnector.session;

SessionManager sessionmgmt = Session.getInstance();
if (sessionmgmt.hasValidSession()) {

BuilderFactory factory = BuilderFactory.getInstance();
RequestBuilder reqBuilder = factory.getRequestBuilder () ;

String hcpartyXML = "";
HCPartyIdType hcparty = reqBuilder.buildHCPartyIdType (hcpartyXML) ;

HubService hubs = HubSessionServiceFactory.getHubService();
ConsentHCPartyType respCons = hub.getHCPartyConsent (hcparty);

ResponseBuilder respBuilder = factory.getResponseBuilder();
String consentXML = respBuilder.buildConsentHCPartyTypeResponse (respCons) ;
// business logic

eHealth-platform Services Connectors V4 - Guide v.1.9dd 13/10/2021

16/28

7.3 How to use the generic services of the technical connector?

It is possible to invoke a web service within a session that is not supported by the connector. Or, you want to
invoke a supported web service without using the facilities offered by the connector. 2 methods are available:
sendXML and sendDocument. The first one takes the xml to send a string as input. The second one uses a dom
document to transfer the info.

JAVA

import java.net.URL;
import org.w3c.dom.Document;

import org.w3c.dom.Node;

import be.ehealth.technicalconnector.generic.session.GenericService;

import be.ehealth.technicalconnector.generic.session.GenericSessionServiceFactory;

if (sessionmgmt.hasValidSession()) {

GenericService service = GenericSessionServiceFactory.getGenericService();

String payload = “message to send”;
URL endpoint = new URL (“endpoint of the service”);

String response = service.sendXML (payload,endpoint) ;

Document doc =

W78
’

Node respNode = service.sendDocument (doc,endpoint) ;

.NET C#

using System;

using java.net;

using javax.xml.parsers;

using org.w3c.dom;

using be.ehealth.technicalconnector.session;

using be.ehealth.technicalconnector.generic.session;

if (sessionmgmt.hasValidSession()) {
GenericService service = GenericSessionServiceFactory.getGenericService();

String payload = "message to send";
URL endpoint = new URL ("endpoint of the service");
String response = service.sendXML (payload, endpoint) ;

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder build = factory.newDocumentBuilder () ;
Document doc = builder.newDocument () ;
Node respNode = service.sendDocument (doc,endpoint) ;

Since version 3.2 of the connector a new method on the GenericService is added. The genericService can be
invoked with a GenericRequest. This GenericRequest contains the payload, soapaction, endpoint and the SOAP
handlerchain. The payload can be added as string, dom source or as object. Please notice that the java object
must be an object generated by JAXB with the annotation @XmIRootElement, otherwise the connector is not

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 17/28

able to unmarshall the object. The result of the invoked method is a GenericResponse. You can obtain the
response of the invoked web service as a string, dom source or as object. The method getSOAPException()
allows to check if there was no SOAP error present, this is useful for a void operation.

JAVA

import be.ehealth.technicalconnector.ws.domain.*
import be.ehealth.technicalconnector.ws.*

GenericRequest request = new GenericRequest();
request.setPayload("message to send");
request.setEndpoint(“);

request.setDefaultHandlerChain();

GenericWsSender sender = ServiceFactory.getGenericWsSender();

GenericResponse response = sender.send(request);
ResponseObj resp = response.asObject(ResponseObj.class);

.NET

using be.ehealth.technicalconnector.ws.domain.*
using be.ehealth.technicalconnector.ws.*

GenericRequest request = new GenericRequest();
request.setPayload("message to send");
request.setEndpoint(“);

request.setDefaultHandlerChain();

GenericWsSender sender = ServiceFactory.getGenericWsSender();
GenericResponse response = sender.send(request);

ResponseObj resp = response.asObject(ResponseObj.class);

7.4 How to change a property at runtime

It is possible to change properties at runtime. When an object is created sometimes properties are used to
correctly initialize the object. If you change those properties after the object creation off course the property
change is not reflected, a new object must be created.

For example when you change a hub.id and endpoint.hub.intra on the fly, verify that a new intrahub service is
created otherwise the old properties are used.

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 18/28

JAVA

List<String> regProps = new ArrayList<String>();

ConfigValidor confValidator = ConfigFactory.getConfigValidator (regProps) ;
Configuration config = confValidator.getConfiguration();

config.setProperty ("hub.id","1990000035") ;

config.setProperty ("endpoint.hub.intra", "https://my.hub0l.be/IntraHubService") ;

HubService hubs = HubSessionServiceFactory.getHubService();

// business logic

config.setProperty ("hub.id","1990000134") ;
config.setProperty ("endpoint.hub.intra", "https://my.hub02.be/IntraHubService");

hubs = HubSessionServiceFactory.getHubService () ;

// business logic

.NET C#

using System;

using java.util;

using be.ehealth.technicalconnector.config;
using be.ehealth.businessconnector.hub.session;

List regProps = new ArraylList();

ConfigValidator confValidator = ConfigFactory.getConfigValidator (regProps);
Configuration config = confValidator.getConfig();

config.setProperty ("hub.id","1990000035") ;

config.setProperty ("endpoint.hub.intra", "https://my.hub0l.be/IntraHubService");

HubService hubs = HubSessionServiceFactory.getHubService();
// business logic

config.setProperty ("hub.id","1990000134") ;
config.setProperty ("endpoint.hub.intra", "https://my.hub02.be/IntraHubService") ;

hubs = HubSessionServiceFactory.getHubService () ;
// business logic

7.5 How to handle a java.util.Collection
In the java version the collections are typed by using generics. This functionality is not present in the .NET

connector. When a collection is returned you must iterate over the collection and cast every item to the correct
object. See code snipped below.

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 19/28

.NET C#

using Jjava.util;

Collection inCollection = server.getCollection();
Iterator collectionIt = inCollection.interator();
Object item = null;
while (collectionId.hasNext ()) {

item = (Object) collectionIt.next();

// business logic

}

7.6 How to exit the JVM correctly through IKVM

Apparently if you are using the .NET version of the connector, the Java Virtual Machine is not correctly
shutdown then not all shutdown hooks are executed, for example: the temporary files created by the
connector are not deleted afterwards. If you want to shut down the JVM correctly.

.NET C#

java.lang.Runtime.exit (0)

7.7 How to use the elD on Windows 8 through IKVM

The system property os.name is not correctly set when you are using IKVM and Windows 8. This property is
used inside the commons-eid framework to enable or disable a patch. If you are experiencing “begin exclusive”
failures in your project and the application is on a Windows 8 platform, you must apply this patch.

In the start-up sequence of your application you must add the following line:

.NET C#

java.lang.System.setProperty ("os.name", "Windows 8") ;

Other operating systems are not impacted.

7.8 How to overload an implementation in the connector

The connector is using the loC desing pattern. The connector code always depends on the interface and not on
the implementation. By changing values in the properties file another implementation class could be loaded.
More information on which property must be set in order to overload the default implementation could be
found in the javadoc.

Inside the connector we are using the fully qualified name of the class for instantiating the implementation
class. For the IKVM java class loader every .NET class is prefixed with cli followed by the fullName of the class. If
you are using inner classes in .NET the + sign is used as delimiter, within Java the $ sign is used. So the .NET
specification must be translated to the JAVA specs.

Below you will find an illustration for implementation overloading with JAVA and with .NET

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 20/28

JAVA

private class Overloading() implements SomelInterface{
public void init () {
//init logic

ConfigValidor confValidator = ConfigFactory.getConfigValidator();
Configuration config = confValidator.getConfiguration();
config.setProperty ("overloading.prop",Overloading.class.getName ()) ;

.NET C#

using System;
using java.util;
using be.ehealth.technicalconnector.config;

public class Overloading : SomelInterface {
public void init () {
//init logic

ConfigValidator confValidator = ConfigFactory.getConfigValidator () ;
Configuration config = confValidator.getConfig();

string className = “cli”+ typeof (Overloading) .FullName.Replace (“+”,”$");
config.setProperty ("overloading.prop", className)

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 21/28

8. Connecting to a MyCareNet asynchronous

service

8.1 Code examples

See /examples folder in the packaging zip file

There is a generic example under examples\be\ehealth\businessconnector\genericasync\integration and for
specific implementations there are examples provided under
examples\be\ehealth\businessconnector\{projectName}\

8.2 Usage and configuration parameters

See MyCareNet documentation Service_Catalogue_genericAsync.pdf on share.intermut.be

For services tested by eHealth the configuration is already provided.
8.2.1 Example configuration for invoicing

Can be found in property file /config/ be.ehealth.technicalconnector.properties : (these property files are
provided for each release)

Configuration of BUSINESS

module #

HHFH A
#H#

configuration for packagelInfo
genericasync.invoicing.package.licence.username=${mycarenet.licence.username}
genericasync.invoicing.package.licence.password=${mycarenet.licence.password}
genericasync.invoicing.package.name=${package.name}

#indicate the xades level needed on the get response , possible values :
none , #xades , xadest
genericasync.invoicing.mycarenet.get.response.neededxadeslevel=xadest

#define the endpoint to use
endpoint.genericasync.invoicing.vl=https://pilot.mycarenet.be/mycarenet
- ws/async/generic/hcpfac

#indicate if you wish to validate the incoming xml with xsd validation (
check if #the format is correct)
validation.incoming.message.genericasync.invoicing.vl=true

#configure blob type for invoicing : fill these properties with the
values specified in the mycarenet documentation

#indicate that you don’t want to use the default values for this
project mycarenet.blobbuilder.invoicing.usedefaultproperties=false
#indicate the name of the id , by default we use the name

blob mycarenet.blobbuilder.invoicing.id=blob

#indicate the encoding type, possible values none,

deflate

mycarenet.blobbuilder.invoicing.encodingtype=deflate

#indicate the content mime type
mycarenet.blobbuilder.invoicing.contenttype=text/plain

o o Miicar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 22/28

8.3 Usage

8.3.1 Create the service

JAVA

GenAsyncService service = GenAsyncSessionServiceFactory.getGenAsyncService(projectName);

Configuration property

endpoint.genericasync.{projectName}.vl=https://..mycarenet.be/mycarenet-
ws/async/generic/..

8.3.2 Create requests

8.3.2.1 Create post requests

JAVA

import be.ehealth.business.mycarenetcommons.builders.BlobBuilderFactory;
import be.ehealth.business.mycarenetcommons.builders.CommonBuilder;

import be.ehealth.business.mycarenetcommons.builders.RequestBuilderFactory;
import be.ehealth.business.mycarenetcommons.domain.Blob;

import be.ehealth.business.mycarenetcommons.mapper.SendRequestMapper;
import be.ehealth.technicalconnector.config.util.domain.PackageInfo;

import be.ehealth.businessconnector.genericasync.builders.BuilderFactory;

byte[] contentBytes = .. // create your content here

BlobBuilder bbuilder = BlobBuilderFactory.getBlobBuilder({projectName});
Blob blob = bbuilder.build(contentBytes);
blob.setMessageName("someMessagename");//messagename found in mycarenet
documentation

PackageInfo packageInfo = ConfigUtil.retrievePackageInfo("genericasync." +
"{projectName}");

//for more

//usage of mycarenet factories and builders : see javadoc

CommonInput ci =

jectName}").createCommonInput(packageInfo, true, inputReference));

be.cin.types.vl.Blob det = SendRequestMapper.mapBlobToCinBlob(blob);
BlobType blobForXades = SendRequestMapper.mapBlobToBlobType(blob);
//generate xades if needed (see mycarenet documentation and javadoc)
//usage of BlobUtils see javadoc

byte[] xades = BlobUtil.generateXades(blobForXades).getValue();
RequestObjectBuilder requestBuilder =
BuilderFactory.getRequestObjectBuilder ({projectName});

Post post = requestObjectBuilder.buildPostRequest(ci, det, xades);

String inputReference = IdGeneratorFactory.getIdGenerator("xsid").generateld();

CommonInputMapper.mapCommonInputType (RequestBuilderFactory.getCommonBuilder("{pro

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9dd 13/10/2021

23/28

Configuration property

Packagelnfo : see genericasync.{projectName}.package.*

BlobBuilder : configured with mycarenet.blobbuilder.{projectName}.* , or mycarenet.blobbuilder.default.*
properties, see Javadoc

CommonBuilder : configured via mycarenet.{projectName} properties, see Javadoc

RequestObjectBuilder : no configuration properties at the moment

8.3.2.2 Create get request

JAVA

import be.ehealth.business.mycarenetcommons.builders.CommonBuilder;

import be.ehealth.business.mycarenetcommons.builders.RequestBuilderFactory;
import be.ehealth.businessconnector.genericasync.mappers.CommonInputMapper;
import be.ehealth.businessconnector.genericasync.builders.BuilderFactory;
import be.ehealth.technicalconnector.config.util.ConfigUtil;

CommonBuilder commonBuilder =

RequestBuilderFactory.getCommonBuilder ({projectName});

PackageInfo packageInfo = ConfigUtil.retrievePackageInfo("genericasync." + {
projectName});

OrigineType origin =
commonInputMapper.mapOrigin(commonBuilder.createOrigin(packageInfo));

MsgQuery msgQuery = new MsgQuery();
msgQuery.setInclude(true);
msgQuery.setMax(100);
msgQuery.getMessageNames().add("MessageTypel"); //see mycarenet documentation for
messageTypes

msgQuery.getMessageNames().add("MessageTypel"”);"); //see mycarenet documentation
for messageTypes

Query tackQuery = new Query();

tackQuery.setInclude(true);

tackQuery.setMax(100);

GetRequest getRequest =

BuilderFactory.getRequestObjectBuilder ({projectName}).buildGetRequest(origin,
msgQuery, tackQuery);

Configuration property

packagelnfo : genericasync.{projectName}.package.* properties

RequestBuilderFactory.getCommonBuilder : normally default values , see Javadoc
for configuration

RequestObjectBuilder : no configuration properties at the moment

oF o Micar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 24/28

8.3.2.3 Create confirm request

JAVA

//retrieve message hash values to confirm

for (MsgResponse msgResp : responseGet.getReturn().getMsgResponses()) {
final byte[] hashValue = msgResp.getDetail().getHashValue();
msgHashValues.add(hashValue);

}
// tack

//retrieve technical messages hash values to confirm : same as messageResponses,
// but from responseGet.getReturn().getTackResponses()

Confirm request = new Confirm();

request.setOrigin(origin); //origin is same as in getRequest
request.getMsgHashValues().addAll(msgHashValues);

//msgHashValues can be found in GetResponse.

request.getTAckContents().addAll(tackHashValues);

8.4 Call methods

8.4.1 WsAddressingHeader

For the asynchronous message a header needs to be provided which contains the type of message , and
optionally other parameters (see documentation mycarenet)

There is a WsAddressingUtil that creates the header with the destination (optional, contains the identification
number of the mutuality) and the type of message

Other parameters can be added on the object afterwards if needed

JAVA

import be.ehealth.business.mycarenetcommons.util.WsAddressingUtil;

WsAddressingHeader header = WsAddressingUtil.createHeader(mutualityNumber,
"urn:be:cin:nip:async:generic:get:query");

header.setTo(new URI(""));
header.setFaultTo("http://www.w3.0rg/2005/08/addressing/anonymous");
responseConfirmHeader.setReplyTo("http://www.w3.0rg/2005/08/addressing/anonymous™
)

header.setMessageID(new
URI(IdGeneratorFactory.getIdGenerator("uuid").generatelId()));

8.4.2 Post

JAVA

import be.ehealth.business.mycarenetcommons.util.WsAddressingUtil;
WsAddressingHeader header = WsAddressingUtil.createHeader(mutuality,
"urn:be:cin:nip:async:generic:post:msg");

PostResponse responsePost = service.postRequest(postRequest, header);

o o Miicar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 25/28

http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous

843 Get

JAVA

import be.ehealth.business.mycarenetcommons.util.WsAddressingUtil;

WsAddressingHeader header = WsAddressingUtil.createHeader(null,
"urn:be:cin:nip:async:generic:get:query");

PostResponse responsePost = service.getRequest(getRequest, header);

8.4.4 CONFIRM

JAVA

import be.ehealth.business.mycarenetcommons.util.WsAddressingUtil;

WsAddressingHeader responseConfirmHeader =

WsAddressingUtil.createHeader (mutuality, "
urn:be:cin:nip:async:generic:confirm:hash");

responseConfirmHeader.setTo(new URI(""));
responseConfirmHeader.setFaultTo("http://www.w3.0rg/2005/08/addressing/anonymous"
)
responseConfirmHeader.setReplyTo("http://www.w3.0rg/2005/08/addressing/anonymous"
)

responseConfirmHeader.setMessageID(new
URI(IdGeneratorFactory.getIdGenerator("uuid").generateld()));

PostResponse responsePost = service.postRequest(postRequest, header);

8.5 Handle and validate responses

8.5.1 Handle post response

JAVA

import be.ehealth.businessconnector.genericasync.builders.ResponseObjectBuilder;

ResponseObjectBuilder responseBuilder =
BuilderFactory.getResponseObjectBuilder();

boolean hasWarnings = responseBuilder.handlePostResponse(responsePost);
//if the result is not success, an exception is thrown, if its success but there are warnings , false is returned

o o Miicar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 26/28

http://www.w3.org/2005/08/addressing/anonymous
http://www.w3.org/2005/08/addressing/anonymous

8.5.2 Handle get response

JAVA

import be.ehealth.business.mycarenetcommons.domain.Blob;
import be.ehealth.business.mycarenetcommons.mapper.SendRequestMapper;
import be.ehealth.business.mycarenetcommons.builders.BlobBuilderFactory;

GetResponse responseGet = ...;
// the get response contains multiple business and technical response messages

for (MsgResponse msgResponse : responseGet.getReturn().getMsgResponses()) {
Blob mappedBlob = SendRequestMapper.mapToBlob(msgResponse.getDetail());
byte[] unwrappedMessageByteArray =

BlobBuilderFactory.getBlobBuilder ({projectName}).checkAndRetrieveContent(mappedBl

ob);
//Handle the business response message here

}

for (TAckResponse tackResponse : responseGet.getReturn().getTAckResponses()) {
byte[] tackResponseBytes = tackResponse.getTAck().getValue();
// handle the technical response here

}

Configuration property

Configuration properties for BlobBuilder : see javadoc

8.5.3 Handle confirm response

ConfirmResponse is an empty object , no need to handle it.

o o Miicar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 27/28

9. Known limitations

9.1 Limitations of Java Architecture for XML Binding (JAXB)

The connector uses JAXB for the marshalling and unmarshalling of XML documents. It uses a standardized
binding file so that all the JAXB objects are similar. The consequence of the use of this framework is only one
version of an XSD is supported for each namespace. For example the KMEHR xsd is used in the connector and
must be the same for every business service. Otherwise some security exceptions are thrown at runtime.

9.2 Limitations of IKVM

The connector is written in Java but compiled for .NET C# using the IKVM framework (more information
www.ikvm.net). The advantage of this choice is the only one code base, which is better for maintenance but it
is not native .NET code.

Here are some tricks and tips to speed up your development process
e Do not use the DEBUG mode of .NET

e Do not use the console logging of the logging framework
e Set the connector in DEBUG mode for logging.

If you take this into account you will find all the info needed for debugging in the log file. Only at the first time
loading IKVM might take some time (+ 2 seconds) but after the initial loading it is fast.

For compiling this DDL the following version of IKVM (8.5.0.2) is used. (see https://github.com/windward-
studios/ikvm8/releases/tag/8.5.0.2 for more information). For the elD integration native C# code must be
used.

9.3 Limitations of connector

. The current version of the connector does not support multiple sessions within the same connector
instance. Only one user is allowed for each session. If you want to perform a session switch you must
do unload a session and create a new one.

. The eHealth platform only ensures the correct behaviour by using the provided class path inside the
package. If you change any dependency (upgrade or downgrade) support is not granted.

o o Miicar

eHealth-platform Services Connectors V4 - Guide v.1.9 dd 13/10/2021 28/28

http://www.ikvm.net/
https://github.com/windward-studios/ikvm8/releases/tag/8.5.0.2
https://github.com/windward-studios/ikvm8/releases/tag/8.5.0.2

