

END-TO-END ENCRYPTION
Known recipient (KeyDepot) - REST

Cookbook
Version 1.2

This document is provided to you free of charge by the

eHealth platform
 Willebroekkaai 38 – 1000 Brussel

38, Quai de Willebroeck – 1000 Bruxelles

All are free to circulate this document with reference to the URL source.

ETEE Known recipient – v.1.2 dd 22/04/2021 2/27
KeyDepot - REST - Cookbook

Table of contents

Table of contents .. 2

1. Document management .. 4

1.1 Document history .. 4

2. Introduction ... 5

2.1 Goal of the service ... 5

2.2 Goal of the document .. 5

2.3 eHealth platform document references .. 5

2.4 External document references ... 5

3. Support ... 6

3.1 For issues in production ... 6

3.2 For issues in acceptance .. 6

3.3 For business issues ... 6

3.4 I.AM Connect ... 6

4. Global overview ... 7

4.1 High-level schemas of the ETEE KeyDepot functionality.. 7

4.1.1 Store a Keypair ... 7

4.1.2 Use a Public Key ... 9

5. Step-by-step ... 11

5.1 Technical requirements ... 11

5.1.1 eHealth platform Authentication .. 11

5.1.2 WS-I Basic Profile 1.1 ... 11

5.1.3 Tracing .. 11

5.2 The KeyDepot Rest Services ... 12

5.2.1 POST /keydepot/attestations/options ... 12

5.2.2 POST /keydepot/attestation/result ... 14

5.2.3 PATCH /keydepot/jwks/{kid}.. 16

5.2.4 GET /keydepot/jwks/ ... 16

5.2.5 GET /keydepot/jwks/{kid} .. 18

5.2.6 DELETE /keydepot/jwks/{kid}... 19

5.2.7 GET /accounts/{accountId} .. 19

5.2.8 GET/keydepot/keyholder/{kid} .. 20

6. Risks and security ... 22

6.1 Risks & safety ... 22

6.2 Security .. 22

6.2.1 Business security .. 22

6.2.2 The use of username, password and token ... 22

7. Implementation aspects .. 23

7.1 Procedure ... 23

7.1.1 Initiation ... 23

7.1.2 Development and test procedure .. 23

ETEE Known recipient – v.1.2 dd 22/04/2021 3/27
KeyDepot - REST - Cookbook

7.1.3 Release procedure ... 23

7.1.4 Operational follow-up .. 23

8. Error Management ... 24

8.1 POST /keydepot/attestations/options ... 24

8.2 POST /keydepot/attestation/result ... 24

8.3 PATCH/keydepot/jwks/{kid} .. 24

8.4 GET /keydepot/jwks/ ... 24

8.5 GET /keydepot/attestations/{kid} .. 25

8.6 DELETE /keydepot/jwks/{kid} .. 25

8.7 GET /accounts/{accountId} .. 25

8.8 GET/keydepot/keyholder/{kid} .. 25

8.9 Error codes originating from the eHealth platform: .. 26

9. Annex 3: Structure of the Attestation Object .. 27

To the attention of: “IT expert” willing to integrate this web service.

ETEE Known recipient – v.1.2 dd 22/04/2021 4/27
KeyDepot - REST - Cookbook

1. Document management

1.1 Document history

Version Date Author Description of changes / remarks

1.0 28/11/2019 eHealth platform Initial version

1.1 09/04/2020 eHealth platform WS-I Compliance

1.2 22/04/2021 eHealth platform Tracing

ETEE Known recipient – v.1.2 dd 22/04/2021 5/27
KeyDepot - REST - Cookbook

2. Introduction

2.1 Goal of the service

The End‐To‐End Encryption (ETEE) basic REST services only offer building blocks that allow integrating secure
communications in applications.

It does not offer a pre-packaged ‘End‐To‐End’ business solution. This means you have to create your own
client application with an implementation of a:

 KeyDepot Client

 software that integrates a cryptographic solution

 way to pass on a message reference to a message receiver

 way to pass on a key reference to a message receiver (optional if a key reference is used in the Message
Storage Server (MSS))

 Message Storage Center (you could store the message reference in the MSS);

2.2 Goal of the document

This document is intended as an integration support guide for the eHealth platform’s REST service “ETEE ‐
Depot Interface”. The target audience is software integrators implementing the ETEE REST service in their
own custom application. This document is not a software manual for end users but explains the concepts,
principles and interface of the KeyDepot REST WS.

2.3 eHealth platform document references

On the portal of the eHealth platform, you can find all the referenced documents.1. These versions or any
following versions can be used for the eHealth platform service.

ID Title Version Date Author

1 Glossary.pdf 1.0 Pm eHealth platform

2 eHealth Services – Web Access 2.0 12/07/2019 eHealth platform

3 I.AM Connect Technical
specifications

1.1 12/08/2019 eHealth platform

4 I.AM Connect – Client
Registration

1.02 25/02/2019 eHealth platform

2.4 External document references

ID Title Source

1 Webauthn site https://www.w3.org/TR/webauthn/

2 Basic Profile Version 1.1 http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

1 www.ehealth.fgov.be/ehealthplatform

https://www.w3.org/TR/webauthn/
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
file:///C:/Users/eh11/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/CRLPGTFG/www.ehealth.fgov.be/ehealthplatform

ETEE Known recipient – v.1.2 dd 22/04/2021 6/27
KeyDepot - REST - Cookbook

3. Support

3.1 For issues in production

eHealth platform contact center:

 Phone: 02/788 51 55

 Mail: support@ehealth.fgov.be

 Contact Form :

- https://www.ehealth.fgov.be/ehealthplatform/nl/contact (Dutch)
- https://www.ehealth.fgov.be/ehealthplatform/fr/contact (French)

3.2 For issues in acceptance

Integration-support@ehealth.fgov.be

3.3 For business issues

 regarding an existing project: the project manager in charge of the application or service

 regarding a new project and other business issues: info@ehealth.fgov.be

3.4 I.AM Connect

 In order to use the KeyDepot REST service you have to obtain an “Access token” which is delivered
through I.AM Connect. You can find more information about I.AM Connect and how to register a client
in I.AM Connect on the IAM eHealth portal page:

Dutch version:
https://www.ehealth.fgov.be/ehealthplatform/nl/service-iam-identity-access-management

French version:
https://www.ehealth.fgov.be/ehealthplatform/fr/service-iam-identity-access-management

mailto:support@ehealth.fgov.be
https://www.ehealth.fgov.be/ehealthplatform/nl/contact
https://www.ehealth.fgov.be/ehealthplatform/fr/contact
mailto:Integration-support@ehealth.fgov.be
mailto:info@ehealth.fgov.be
https://www.ehealth.fgov.be/ehealthplatform/fr/service-iam-identity-access-management

ETEE Known recipient – v.1.2 dd 22/04/2021 7/27
KeyDepot - REST - Cookbook

4. Global overview

4.1 High-level schemas of the ETEE KeyDepot functionality

Below you will find two schemas representing the context of the ‘Depot Interface’ REST service use. First to
store and secondly an example to get a recording.

4.1.1 Store a Keypair

1. The client/app requests authorization at the eHealth platform. See authentication/authorization flows for
a full description.

2. If the client has received permissions to register asymmetric keys on behalf user, this will be mentioned
in the access Token and the client/app can send a request for a registration of a new public key (initial
registration request).

The eHealth platform follows the W3C Web Authentication recommendation (W3C WebAuthn) to register
keys. The initial request for registration is outside of the scope of WebAuthn. This means the eHealth
platform will return a challenge, user info, and relying party info to the client. W3C WebAuthn.

3. Before doing anything, the client or device that will generate the key pair will ask for some form of user
verification, like a PIN, to prove that the user is present and consenting the registration.

4. After the user verification, the client or device will create a new asymmetric key pair and safely store the
private key for future reference.

5. The client or device will generate and sign an attestation, including the newly generated public key.

 The attestation can be signed by the generated key itself (self-attestation) or the device that generated
the key in case it supports this (such as a WebAuthn compliant Authenticator). The latter can be used to
prove that the key pair was generated and protected by a device, recognized to be secure.

ETEE Known recipient – v.1.2 dd 22/04/2021 8/27
KeyDepot - REST - Cookbook

 The client should also offer the user to choose a meaningful name for his key for later consultation and
revocation. This name will be transmittable to the eHealth key store.

6. The client sends the attestation to the eHealth platform.

7. The eHealth platform will validate the attestation to ensure that the registration was complete and not
tampered with.

 Validation includes the challenge, origin, and signature. If a recognized authenticator device signed the
attestation, that chain will be validated as well.

8. Assuming that the checks pan out, the eHealth platform will store the new public key associated with the
user's account for future use.

 The key will be linked to the user and the requesting client, both mentioned in the access Token: Identifier
(Id, Type), application Identifier. eHealth’s Keystore API will have search options for those fields, including
the unique credentialId of the key, generated by the client or authenticator device, as described in the
WebAuthn recommendation. An expiration policy is added to the key.

ETEE Known recipient – v.1.2 dd 22/04/2021 9/27
KeyDepot - REST - Cookbook

4.1.2 Use a Public Key

6. Send Sealed Resource

8. Get KeyInfo by ID

7. Decrypt Resource

9. Validate Signature

4. Get Public Key for Encryption

1. Get Token

2. Enter PIN

3. Sign Resource

5. Encrypt Resource

Sender

Authorization Server

Resource Server
Public Keys

Resource Server
Receiver

HTTP H
eader

Authoriz
atio

n:

Bearer a
ccessToken

1. The client requests authorization at the eHealth platform. See authentication/authorization flows for a
full description.

2. The access Token returned to the client will contain a reference to the registered, active key(s) linked to
the combination of the given client-user, for future reference. See section ‘Security Recommendations,
Risks & Known Limitations’ in document 2.3 eHealth Services – Web Access.

3. The client requests the user to unlock his private key.

4. The client signs the message for content integrity and message authentication.

 The signature must be placed with a key of the user, registered at the eHealth platform and active for the
given client. Those are referenced in the access Token, received in step 1. This ties the pieces together: key,
client and end-user.

5. The client gets the public key of the receiver that can be used for encrypting messages to the particular
resource.

 How the public key is selected from the resource server depends on how the project/app/client is setup to
send messages from sender to receiver. The Public Keys Resource Server will support sufficient filtering

ETEE Known recipient – v.1.2 dd 22/04/2021 10/27
KeyDepot - REST - Cookbook

options, such as: unique identifier of the receiver (SSIN), application identifier (clientID), usage (enc). The
user should only be asked to select a key if there are multiple receivers to choose from.

6. The client encrypts the message with the key received in step 4

7. The client sends the sealed message to the receiver. The access Token, received at the end of step 1, is
added to the request.

8. If the access Token contains sufficient privileges, the receiver decrypts the message.

9. To validate the signature on the message and to authenticate the owner of the key used for it, the receiver
can use the reference of the key to get it from eHealth’s key store, verify the signature with it and verify
if the reference is claimed in the access Token, which proves it is a valid one, linked to the claimed user.
This verifies that the sender of the message is also the author and that the receiver was the intended
audience of the original author.

10. The receiver validates the signature.

ETEE Known recipient – v.1.2 dd 22/04/2021 11/27
KeyDepot - REST - Cookbook

5. Step-by-step

5.1 Technical requirements

5.1.1 eHealth platform Authentication

As explained previously, to use the ETEE KeyDepot service, you must have an access token delivered
through I.AM Connect.

One role is defined for the using of the KeyDepot Rest service:

- manage-keys: This role must be present in the access token in order to use the POST, PATCH and
DELETE methods of the service

Presentation of the roles in the access token:

 "ehealth-etee-backend": {

 "roles": [

 "read-keys",

 "manage-keys"

]

 }

For the organizations using the KeyDepot Rest service, the local manager of the organization has the
possibility to assign these roles to his members through the UMAN application.

5.1.2 WS-I Basic Profile 1.1

Your request must be WS-I compliant (Cfr External Ref). If not you will receive one of the errors SOA-03001 –
SOA-03003.

5.1.3 Tracing

To use this service, the request SHOULD contain the following two http header values (see RFC
https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.8):

1. User-Agent: information identifying the software product and underlying technical stack/platform.

 Pattern: {company}/{package-name}/{version} {platform-company}/{platform-package-
name}/{platform-package-version}

 Regular expression for each subset (separated by a space) of the pattern: [[a-zA-Z0-9-\/]*\/[0-9a-
zA-Z-_.]*

 Examples:
User-Agent: MyCompany/myProduct/62.310.4 eHealth/Technical/3.19.0
User-Agent: Topaz-XXXX/123.23.X Taktik/freeconnector/XXXXX.XXX

2. From: email-address that can be used for emergency contact in case of an operational problem
Examples:
From: info@mycompany.be

https://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.8):
mailto:info@mycompany.be

ETEE Known recipient – v.1.2 dd 22/04/2021 12/27
KeyDepot - REST - Cookbook

5.2 The KeyDepot Rest Services

The REST interface is described with a JSON/Swagger API.

To store a new Keypair, you need first to send a POST-options request and then a POST-result request.

5.2.1 POST /keydepot/attestations/options

 Request

Requests “authorization” options.

This initial request is necessary to retry information (be authenticated) before send an attestationObject or
JsonObject to register a key.

If the client has received permissions to register asymmetric keys on behalf user, the request will return a
success response.

Request elements:

Element Description

username String of the username

displayName String of the display name

authenticatorSelection

attestation

Example:
{

 "username": "apowers",

 "displayName": "Adam Powers"

 “authenticatorSelection”:

 {

 }

}

 Response

The POST operation returns an attestation authorisation, containing a challenge, user info and relying party
info to the client. 200 ok

Element Description

attestation Specify their preference regarding attestation
conveyance during credential generation:

- “none”: Relying Party is not interested in
authenticator attestation

- “indirect”: Relying Party prefers an
attestation conveyance yielding verifiable
attestation statements, but allows the client
to decide how to obtain such attestation
statements

- “direct”: Relying Party wants to receive the
attestation statement as generated by the
authenticator

ETEE Known recipient – v.1.2 dd 22/04/2021 13/27
KeyDepot - REST - Cookbook

challenge This member represents a challenge that the
selected authenticator signs, along with other data,
when producing an authentication assertion

authenticatorSelection authenticatorAttachment:

If this member is present, eligible authenticators are
filtered to only authenticators attached with the
specified value (“platform” or “cross-platform” or
unspecified)

userVerification:

This member describes the Relying Party's
requirements regarding user verification for the
create() operation. Eligible authenticators are
filtered to only those capable of satisfying this
requirement. (Available values: “required”,
“preferred”, “discouraged”)

requiredResidentKey:

This member describes the Relying Parties
requirements regarding resident credentials. If the
parameter is set to true, the authenticator MUST
create a client-side-resident public key credential
source when creating a public key credential.

rp This member contains data about the Relying Party
responsible for the request

timeout This member specifies a time, in milliseconds, that
the caller is willing to wait for the call to complete

publicKeyCredParams Information about the desired properties of the
credential to be created

- Type: the type of credential to be created

- Alg: the cryptographic signature algorithm
with which the newly generated credential
will be used, and thus also the type of
asymmetric key pair to be generated, e.g.,
RSA or Elliptic Curve

user Information about the user who sent the request:

- username: the username used in the
request

- displayname: the displayname used in the
request

- accountId: Id generated by the service and
linked to the user

Example:

{
 "rp": {
 "id": null,
 "name": "ci-etee-webapp-client",

ETEE Known recipient – v.1.2 dd 22/04/2021 14/27
KeyDepot - REST - Cookbook

 "icon": null
 },
 "challenge": "ZjBhYjJmYjktM2RhZC00NTg3LWEwZjktZDYwNzVmYzNmZmMw",
 "pubKeyCredParams": [
 {
 "type": "public-key",
 "alg": -7
 },
 {
 "type": "public-key",
 "alg": -257
 }
],
 "timeout": 300000,
 "authenticatorSelection": null,
 "attestation": "direct",
 "user": {
 "name": "name",
 "displayName": "displayName",
 "id": "MDY2MmIzZDktMjIyMy00ZTI5LThlNTYtY2Y0YmMwMDk0YzYx"
 }
}

5.2.2 POST /keydepot/attestation/result

 Request

Post request to send an attestation to eHealth. This attestation contains mainly the public key of an ‘assymetric
keys pair’ as object.
/!\ This request contains only simple attestation. To extend the key with more information, it is necessary to
use de request PATCH /keydepot/jwks/{kid}

This request has inputs:

Element Description

id The credential’s identifier. the base64url encoding of
the rawid

rawId This attribute returns the ArrayBuffer contained in
the [[identifier]] internal slot.

This internal slot contains the credential ID, chosen
by the authenticator. The credential ID is used to
look up credentials for use, and is therefore
expected to be globally unique with high probability
across all credentials of the same type, across all
authenticators.

type The PublicKeyCredential interface object's [[type]]
internal slot's value is the string "public-key".

clientDataJSON This attribute contains a JSON serialization (This is
the result of JSON stringifying and UTF-8 encoding to
bytes a CollectedClientData dictionary) of the client
data passed to the authenticator by the client in its
call to either create() or get()

attestationObject This attribute contains an attestation object, which is
opaque to, and cryptographically protected against
tampering by, the client. The attestation object

https://developer.mozilla.org/en-US/docs/Web/API/WindowBase64/Base64_encoding_and_decoding

ETEE Known recipient – v.1.2 dd 22/04/2021 15/27
KeyDepot - REST - Cookbook

contains both authenticator data and an attestation
statement. The former contains the AAGUID, a
unique credential ID, and the credential public key.
The contents of the attestation statement are
determined by the attestation statement format
used by the authenticator. It also contains any
additional information that the Relying Party's server
requires to validate the attestation statement, as
well as to decode and validate the authenticator
data along with the JSON-serialized client data

Example:

{

 "id": "dmggefOw7Zdso8sGTR_VW42YtBIaxEYVJE7PMs3p62ysGRRJJzWl0fPNkI6bXUT- "rawid":

"dmggefOw7Zdso8sGTR_VW42YtBIaxEYVJE7PMs3p62ysGRRJJzWl0fPNkI6bXUT-QQP35uXhB9bDxCC-

lZTIww",

 "type": "public-key",

 "clientDataJSON":

"eyJjaGFsbGVuZ2UiOiJaYTFaRzYxREZhc3pQeW00Tng5TG1iUUVHZkZ1RXVQNWpxRHgtckFRd191RGtRd

XYyZDVsVUcyVmZlS3lOMGJkc0kzRUJUeG02d0lKamxSdDFWVURhZyIsIm5ld19rZXlzX21heV9iZV9hZGRl

ZF9oZXJlIjoiZG8gbm90IGNvbXBhcmUgY2xpZW50RGF0YUpTT04gYWdhaW5zdCBhIHRlbXBsYXRlLiBTZW

UgaHR0cHM6Ly9nb28uZ2wveWFiUGV4Iiwib3JpZ2luIjoiaHR0cHM6Ly93ZWJhdXRobi5vcmciLCJ0eXBlIjoid

2ViYXV0aG4uY3JlYXRlIn0",

 "attestationObject":

"o2NmbXRmcGFja2VkZ2F0dFN0bXSjY2FsZyZjc2lnWEgwRgIhALiD9zcYn70iduuqf5vIs-GQUBsKOgYuIpWi-

N7uZ3J2AiEAnOw7OdjvufPpI5B90voC_9rHEL6lXZyvgNWZHTVbHD1jeDVjgVkCwjCCAr4wggGmoAMCAQ

ICBHSG_cIwDQYJKoZIhvcNAQELBQAwLjEsMCoGA1UEAxMjWXViaWNvIFUyRiBSb290IENBIFNlcmlhbCA0

NTcyMDA2MzEwIBcNMTQwODAxMDAwMDAwWhgPMjA1MDA5MDQwMDAwMDBaMG8xCzAJBgNVBA

YTAlNFMRIwEAYDVQQKDAlZdWJpY28gQUIxIjAgBgNVBAsMGUF1dGhlbnRpY2F0b3IgQXR0ZXN0YXRpb2

4xKDAmBgNVBAMMH1l1YmljbyBVMkYgRUUgU2VyaWFsIDE5NTUwMDM4NDIwWTATBgcqhkjOPQIBBg

gqhkjOPQMBBwNCAASVXfOt9yR9MXXv_ZzE8xpOh4664YEJVmFQ-

ziLLl9lJ79XQJqlgaUNCsUvGERcChNUihNTyKTlmnBOUjvATevto2wwajAiBgkrBgEEAYLECgIEFTEuMy42LjEu

NC4xLjQxNDgyLjEuMTATBgsrBgEEAYLlHAIBAQQEAwIFIDAhBgsrBgEEAYLlHAEBBAQSBBD4oBHzjApNFYA

GFxEfntx9MAwGA1UdEwEB_wQCMAAwDQYJKoZIhvcNAQELBQADggEBADFcSIDmmlJ-

OGaJvWn9CqhvSeueToVFQVVvqtALOgCKHdwB-Wx29mg2GpHiMsgQp5xjB0ybbnpG6x212FxESJ-

GinZD0ipchi7APwPlhIvjgH16zVX44a4e4hOsc6tLIOP71SaMsHuHgCcdH0vg5d2sc006WJe9TXO6fzV-

ogjJnYpNKQLmCXoAXE3JBNwKGBIOCvfQDPyWmiiG5bGxYfPty8Z3pnjX-

1MDnM2hhr40ulMxlSNDnX_ZSnDyMGIbk8TOQmjTF02UO8auP8k3wt5D1rROIRU9-

FCSX5WQYi68RuDrGMZB8P5-

byoJqbKQdxn2LmE1oZAyohPAmLcoPO5oYXV0aERhdGFYxJVpCI8ezuMjKVQDXb0Q18rjkTBaJ1G1WbuP1

8uyKb3UQQAAAAP4oBHzjApNFYAGFxEfntx9AEB2aCB587Dtl2yjywZNH9VbjZi0EhrERhUkTs8yzenrbKwZF

EknNaXR882QjptdRP5BA_fm5eEH1sPEIL6VlMjDpQECAyYgASFYIOvQEknPbz1SUGSYult0AZu3tMbTZALIf-

Ag28do-hHsIlggzNfCQUrlO8MZ2umPFs_tAALs0yczVeLc7fwuEwNMF8g"
}

 Response

The response contains the status of the creation: by example if success: 201 created

ETEE Known recipient – v.1.2 dd 22/04/2021 16/27
KeyDepot - REST - Cookbook

5.2.3 PATCH /keydepot/jwks/{kid}

PATCH method to add information to an existing public key already registered by a POST method.

 Request

The method specifies Kid to recognize the key that we want to patch.

All the inputs of the request are optional:

- An ‘use’ specification if the public key has a limitation to a specific usage.

- A meaningfull name for this key.

Example:
{

 "use": "sig",

 "name": "moto g 2013"

}

Response

Just a 200 success or an error.

5.2.4 GET /keydepot/jwks/

GET method to retrieve all the user’s public keys for a specified usage.

 Request

Element Description

type Id type of the client (SSIN, NIHII, CBE, EHP)

identifier Value of the client’s identifier

use The use specification of the public key(s) which must
be retrieved:

2 values possible: “sig” or “enc”

application The application name of the public key(s) which
must be retrieved

validityTime This parameter is a date. It allows filtering the
response in order to return only the key(s), which
was (were) valid at this time.

Example:

GET https://testURL/etee/v1/pubKeys/webauthn/jwks?type=NIHII&value=12345678&use=enc

 Response

A 200 success or an error + the element key composed by the following elements:

Element Description

kty The key type

crv The curve of the key

use The use specification of the public key which must
was retrieved:

2 values possible: “sig” or “enc”

ETEE Known recipient – v.1.2 dd 22/04/2021 17/27
KeyDepot - REST - Cookbook

alg The signature algorithm

kid The identifier of the key (its credential ID)

Example:
{

 "keys": [

 {

 "kty": "EC",

 "crv": "P-256",

 "x": "MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

 "y": "4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

 "use": "enc",

 "kid": 1

 },

 {

 "kty": "EC",

 "crv": "P-256",

 "x": "MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

 "y": "4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

 "use": "enc",

 "kid": 1

 }

]

}

GET /keydepot/attestations/{kid}

GET method to retrieve the attestationObject linked to the public key

 Request

Element Description

kid The identifier of a key (its credential ID)

 Response

Element Description

attestationObject This attribute contains an attestation object, which is
opaque to, and cryptographically protected against
tampering by, the client. The attestation object
contains both authenticator data and an attestation
statement. The former contains the AAGUID, a
unique credential ID, and the credential public key.
The contents of the attestation statement are
determined by the attestation statement format
used by the authenticator. It also contains any
additional information that the Relying Party's server
requires to validate the attestation statement, as
well as to decode and validate the authenticator
data along with the JSON-serialized client data

Example:

{

 "fmt": "packed",

 "attStmt": {

 "alg": -7,

ETEE Known recipient – v.1.2 dd 22/04/2021 18/27
KeyDepot - REST - Cookbook

 "sig":
"MEUCIChhscYVuwVJ7auffigqP0aQAAka5xdLWNqxPXohL+AJAiEAtq4O03hodwiA6UwXJpinut/IumEXiJZbh6XC6
Mx5Km8=",

 "x5c":
["MIICvDCCAaSgAwIBAgIEA63wEjANBgkqhkiG9w0BAQsFADAuMSwwKgYDVQQDEyNZdWJpY28gVTJGIFJvb3Qg
Q0EgU2VyaWFsIDQ1NzIwMDYzMTAgFw0xNDA4MDEwMDAwMDBaGA8yMDUwMDkwNDAwMDAwMFowbTEL
MAkGA1UEBhMCU0UxEjAQBgNVBAoMCVl1YmljbyBBQjEiMCAGA1UECwwZQXV0aGVudGljYXRvciBBdHRlc3Rhd
GlvbjEmMCQGA1UEAwwdWXViaWNvIFUyRiBFRSBTZXJpYWwgNjE3MzA4MzQwWTATBgcqhkjOPQIBBggqhkjOP
QMBBwNCAAQZnoecFi233DnuSkKgRhalswn+ygkvdr4JSPltbpXK5MxlzVSgWc+9x8mzGysdbBhEecLAYfQYqpVLW
WosHPoXo2wwajAiBgkrBgEEAYLECgIEFTEuMy42LjEuNC4xLjQxNDgyLjEuNzATBgsrBgEEAYLlHAIBAQQEAwIEMDA
hBgsrBgEEAYLlHAEBBAQSBBD6K5ncnjlCV4+SSjDSPEEYMAwGA1UdEwEB/wQCMAAwDQYJKoZIhvcNAQELBQADg
gEBACjrs2f+0djw4onryp/22AdXxg6a5XyxcoybHDjKu72E2SN9qDGsIZSfDy38DDFr/bF1s25joiu7WA6tylKA0HmEDl
oeJXJiWjv7h2Az2/siqWnJOLic4XE1lAChJS2XAqkSk9VFGelg3SLOiifrBet+ebdQwAL+2QFrcR7JrXRQG9kUy76O2VcS
gbdPROsHfOYeywarhalyVSZ+6OOYK/Q/DLIaOC0jXrnkzm2ymMQFQlBAIysrYeEM1wxiFbwDt+lAcbcOEtHEf5ZlWi
75nUzlWn8bSx/5FO4TbZ5hIEcUiGRpiIBEMRZlOIm4ZIbZycn/vJOFRTVps0V0S4ygtDc="]

 },

 "authData":
"qMoabMVg0shaCPj1W89eumXXnbFImqNaojrhUE/2VkpBAAAARPormdyeOUJXj5JKMNI8QRgAQDT9JVDZAEEjE
VRse8BsAIL0l8zGC3NQ3MQ3YgteevbTF+6F4GcFy+1izsB7/arHgy6dDCrW75QWy5PV83sFFmmlAQIDJiABIVggu9H
JpHA0+HqQKCk0e/h/QVs36aKl44FzTw5y1ww2ARciWCDUt9wTtRg8yZuslA66rIQ2A71WjoxFWKefx3wlqJeA/A=="

}

5.2.5 GET /keydepot/jwks/{kid}

GET method to retrieve only one specific public key.

 Request

Element Description

kid The identifier of a key (its credential ID)

 Response

A 200 success or an error + the element key which is composed by the following elements:

Element Description

kty The key type

crv The curve of the key

use The use specification of the public key which must
was retrieved:

2 values possible: “sig” or “enc”

kid The identifier of the key (its credential ID)

ETEE Known recipient – v.1.2 dd 22/04/2021 19/27
KeyDepot - REST - Cookbook

Example:
{

 "kty": "EC",

 "crv": "P-256",

 "x": "MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",

 "y": "4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",

 "use": "enc",

 "kid": 1

}

5.2.6 DELETE /keydepot/jwks/{kid}

DELETE method to delete a specific public key.

 Request

Element Description

kid The identifier of a key (its credential ID)

 Response

Just a 200 success response or an error.

5.2.7 GET /accounts/{accountId}

GET method to retrieve all the keys linked to a person (public keys, keys created,…)

 Request

Element Description

accountId Account Id linked to the user. It was generated and
returned to the user in the
POST/keydepot/attestations/options response

 Response

Element Description

accountid Account Id that the user inserted in his request

username The username linked to the user

details - name Meaningfull name of the key

details - attestationObjectRef Reference to the AttestationObject of the public
keys linked to the accountId

details - jwkRef References to the public keys linked to the
accountId

Example:

{

 "accountId": "08455776-6b71-45a9-bf07-9f98d3776dc3",

 "details": [

 {

ETEE Known recipient – v.1.2 dd 22/04/2021 20/27
KeyDepot - REST - Cookbook

 "jwkRef": "{}",

 "name": "moto g 2013",

 "attestationObjectRef": "{}"

 },

 {

 "jwkRef": "{}",

 "name": "moto g 2013",

 "attestationObjectRef": "{}"

 }

],

 "username": "johndoe"

}

5.2.8 GET/keydepot/keyholder/{kid}

Get method which allows to retrieve the information about a key holder

 Request

Element Description

kid The identifier of a key (its credential ID)

 Response

Element Description

keyholder Claim of the user

Example:

{

 "keyholder": [

 {

 "persons": [{

 "ssin": "0123456789",

 "lastName": "Doe",

 "firstName": "John",

 }]

}

]

}

OR

{

 "keyholder": [

 {

 "organizations": [{

 "name": "PHARMACY TOUJOURS MALADE",

ETEE Known recipient – v.1.2 dd 22/04/2021 21/27
KeyDepot - REST - Cookbook

 "pharmacy": {

 "nihii": "12345678",

 }

 }] }

]

}

ETEE Known recipient – v.1.2 dd 22/04/2021 22/27
KeyDepot - REST - Cookbook

6. Risks and security

6.1 Risks & safety

6.2 Security

6.2.1 Business security

In case the development adds an additional use case based on an existing integration, the eHealth platform
must be informed at least one month in advance with a detailed estimate of the expected load. This will ensure
an effective capacity management.

In case of technical issues on the WS, the partner may obtain support from the contact center (see Chap 3)

In case the eHealth platform finds a bug or vulnerability in its software, we advise the partner to update his
application with the newest version of the software within 10 business days.

In case the partner finds a bug or vulnerability in the software or web service that the eHealth platform
delivered, he is obliged to contact and inform us immediately. He is not allowed to publish this bug or
vulnerability in any case.

6.2.2 The use of username, password and token

The username, pass word and token are strictly personal. Partners and clients are not allowed to transfer them.
Every user takes care of his username, pass word and token and he is forced to confidentiality of it. Moreover,
every user is responsible for every use, which includes the use by a third party, until the inactivation.

ETEE Known recipient – v.1.2 dd 22/04/2021 23/27
KeyDepot - REST - Cookbook

7. Implementation aspects

7.1 Procedure

This chapter explains the procedures for testing and releasing an application in acceptation or production.

7.1.1 Initiation

If you intend to use the eHealth platform service, please contact info@ehealth.fgov.be. The project
department will provide you with the necessary information and mandatory documents.

7.1.2 Development and test procedure

You have to develop a client in order to connect to our WS. Most of the required integration info to integrate is
published on the portal of the eHealth platform.

Upon request, the eHealth platform provides you in some cases, with a mock-up service or test cases in order
for you to test your client before releasing it in the acceptance environment.

7.1.3 Release procedure

When development tests are successful, you can request to access the acceptance environment of the eHealth
platform. From this moment, you start the integration and acceptance tests. The eHealth platform suggests
testing during minimum one month.

After successful acceptance tests, the partner sends his test results and performance results with a sample of
“eHealth request” and “eHealth answer” by email to his point of contact at the eHealth platform.

Then the eHealth platform and the partner agree on a release date. The eHealth platform prepares the
connection to the production environment and provides the partner with the necessary information. During
the release day, the partner provides the eHealth platform with feedback on the test and performance tests.

For further information and instructions, please contact: integration-support@ehealth.fgov.be.

7.1.4 Operational follow-up

Once in production, the partner using the eHealth platform service for one of his applications will always test
first in the acceptance environment before releasing any adaptations of its application in production. In
addition, he will inform the eHealth platform on the progress and test period.

mailto:info@ehealth.fgov.be
mailto:integration-support@ehealth.fgov.be

ETEE Known recipient – v.1.2 dd 22/04/2021 24/27
KeyDepot - REST - Cookbook

8. Error Management

8.1 POST /keydepot/attestations/options

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

401 NOT_AUTHENTICATED The JsonWebToken is not valid.

503 Service Unavalaible Failure server response

8.2 POST /keydepot/attestation/result

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

401 NOT_AUTHENTICATED Client error

412 VALIDATION_FAILED Error in challenge, origin and
signature validation

503 Service Unavalaible Failure server response

The Swagger schema validation of the request and response objects will be done by the API Gateway.

A validation is made on attestation sent by post request.

8.3 PATCH/keydepot/jwks/{kid}

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

404 NOT FOUND A Specific resource was requested
and not found

503 Service Unavalaible Failure server response

8.4 GET /keydepot/jwks/

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

ETEE Known recipient – v.1.2 dd 22/04/2021 25/27
KeyDepot - REST - Cookbook

404 NOT FOUND A Specific resource was requested
and not found

200 Empty list The search request returns no
result

8.5 GET /keydepot/attestations/{kid}

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

404 NOT FOUND A Specific resource was requested
and not found

204 No Content The search request returns no
result

8.6 DELETE /keydepot/jwks/{kid}

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

404 NOT FOUND A Specific resource was requested
and not found

204 No Content The search request returns no
result

8.7 GET /accounts/{accountId}

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

404 NOT FOUND A Specific resource was
requested and not found

204 No Content The search request returns no
result

8.8 GET/keydepot/keyholder/{kid}

The request body should be valid as defined in the REST interface (Swagger). If not, the WS must return an
error 400 : Bad request.

ETEE Known recipient – v.1.2 dd 22/04/2021 26/27
KeyDepot - REST - Cookbook

Http error code Error Code Error description

400 (Bad Request) BAD_REQUEST The request is not valid

404 NOT FOUND A Specific resource was
requested and not found

204 No Content The search request returns no
result

8.9 Error codes originating from the eHealth platform:

These error codes first indicate a problem in the arguments sent, or a technical error.

Error code Component Description Solution

SOA-03001 Consumer This is the default error for content related errors
in case no more details are known.

Malformed message

SOA-03002 Consumer Message does not respect the SOAP standard. Message must be SOAP

SOA-03003 Consumer Message respects the SOAP standard, but body is
missing.

Message must contain
SOAP body

ETEE Known recipient – v.1.2 dd 22/04/2021 27/27
KeyDepot - REST - Cookbook

9. Annex 3: Structure of the Attestation Object

